{"title":"Design of TDMA-based in-car networks: Applying multiprocessor scheduling strategies on time-triggered switched ethernet communication","authors":"Jan Kamieth, T. Steinbach, Franz Korf, T. Schmidt","doi":"10.1109/ETFA.2014.7005119","DOIUrl":null,"url":null,"abstract":"Real-time Ethernet variants gain importance for communication infrastructure of various time-critical domains, such as in-car networks. Synchronous time-triggered traffic guarantees strict timing but requires a detailed schedule for all participants. Designing these schedules by hand is extensive work and with increasing network size almost impossible. In this paper, we contribute a mapping of the time-triggered network scheduling problem into the domain of multiprocessor scheduling. This set of transformation rules allows us to apply established scheduling algorithms as well as new strategies to organise time-triggered switched networks. Experimental results from a prototype implementation of a scheduling framework based on this mapping show the feasibility of our concept. The framework demonstrates a multiple solver approach that uses algorithms with different optimality criteria in parallel.","PeriodicalId":20477,"journal":{"name":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","volume":"37 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2014.7005119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Real-time Ethernet variants gain importance for communication infrastructure of various time-critical domains, such as in-car networks. Synchronous time-triggered traffic guarantees strict timing but requires a detailed schedule for all participants. Designing these schedules by hand is extensive work and with increasing network size almost impossible. In this paper, we contribute a mapping of the time-triggered network scheduling problem into the domain of multiprocessor scheduling. This set of transformation rules allows us to apply established scheduling algorithms as well as new strategies to organise time-triggered switched networks. Experimental results from a prototype implementation of a scheduling framework based on this mapping show the feasibility of our concept. The framework demonstrates a multiple solver approach that uses algorithms with different optimality criteria in parallel.