Fast Boosting Based Detection Using Scale Invariant Multimodal Multiresolution Filtered Features

A. Costea, R. Varga, S. Nedevschi
{"title":"Fast Boosting Based Detection Using Scale Invariant Multimodal Multiresolution Filtered Features","authors":"A. Costea, R. Varga, S. Nedevschi","doi":"10.1109/CVPR.2017.112","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel boosting-based sliding window solution for object detection which can keep up with the precision of the state-of-the art deep learning approaches, while being 10 to 100 times faster. The solution takes advantage of multisensorial perception and exploits information from color, motion and depth. We introduce multimodal multiresolution filtering of signal intensity, gradient magnitude and orientation channels, in order to capture structure at multiple scales and orientations. To achieve scale invariant classification features, we analyze the effect of scale change on features for different filter types and propose a correction scheme. To improve recognition we incorporate 2D and 3D context by generating spatial, geometric and symmetrical channels. Finally, we evaluate the proposed solution on multiple benchmarks for the detection of pedestrians, cars and bicyclists. We achieve competitive results at over 25 frames per second.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"40 1","pages":"993-1002"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper we propose a novel boosting-based sliding window solution for object detection which can keep up with the precision of the state-of-the art deep learning approaches, while being 10 to 100 times faster. The solution takes advantage of multisensorial perception and exploits information from color, motion and depth. We introduce multimodal multiresolution filtering of signal intensity, gradient magnitude and orientation channels, in order to capture structure at multiple scales and orientations. To achieve scale invariant classification features, we analyze the effect of scale change on features for different filter types and propose a correction scheme. To improve recognition we incorporate 2D and 3D context by generating spatial, geometric and symmetrical channels. Finally, we evaluate the proposed solution on multiple benchmarks for the detection of pedestrians, cars and bicyclists. We achieve competitive results at over 25 frames per second.
基于尺度不变多模态多分辨率滤波特征的快速增强检测
在本文中,我们提出了一种新的基于增强的滑动窗口对象检测解决方案,该解决方案可以跟上最先进的深度学习方法的精度,同时速度快10到100倍。该解决方案利用了多感官感知,并利用了来自颜色、运动和深度的信息。我们引入了信号强度、梯度幅度和方向通道的多模态多分辨率滤波,以便在多个尺度和方向上捕获结构。为了实现尺度不变的分类特征,我们分析了尺度变化对不同滤波类型特征的影响,并提出了一种校正方案。为了提高识别,我们通过生成空间、几何和对称通道来结合2D和3D上下文。最后,我们在检测行人、汽车和骑自行车的人的多个基准上评估了所提出的解决方案。我们在每秒超过25帧的速度下取得了有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信