Asymptotics for the systematic and idiosyncratic volatility with large dimensional high-frequency data

Pub Date : 2020-07-01 DOI:10.1142/S2010326320500070
Xinbing Kong, Jinguan Lin, Guangying Liu
{"title":"Asymptotics for the systematic and idiosyncratic volatility with large dimensional high-frequency data","authors":"Xinbing Kong, Jinguan Lin, Guangying Liu","doi":"10.1142/S2010326320500070","DOIUrl":null,"url":null,"abstract":"In this paper, we decompose the volatility of a diffusion process into systematic and idiosyncratic components, which are not identified with observations discretely sampled from univariate process. Using large dimensional high-frequency data and assuming a factor structure, we obtain consistent estimates of the Laplace transforms of the systematic and idiosyncratic volatility processes. Based on the discrepancy between realized bivariate Laplace transform of the pair of systematic and idiosyncratic volatility processes and the product of the two marginal Laplace transforms, we propose a Kolmogorov–Smirnov-type independence test statistics for the two components of the volatility process. A functional central limit theorem for the discrepancy is established under the null hypothesis that the systematic and idiosyncratic volatilities are independent. The limiting Gaussian process is realized by a simulated discrete skeleton process which can be applied to define an approximate critical region for an independence test.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326320500070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we decompose the volatility of a diffusion process into systematic and idiosyncratic components, which are not identified with observations discretely sampled from univariate process. Using large dimensional high-frequency data and assuming a factor structure, we obtain consistent estimates of the Laplace transforms of the systematic and idiosyncratic volatility processes. Based on the discrepancy between realized bivariate Laplace transform of the pair of systematic and idiosyncratic volatility processes and the product of the two marginal Laplace transforms, we propose a Kolmogorov–Smirnov-type independence test statistics for the two components of the volatility process. A functional central limit theorem for the discrepancy is established under the null hypothesis that the systematic and idiosyncratic volatilities are independent. The limiting Gaussian process is realized by a simulated discrete skeleton process which can be applied to define an approximate critical region for an independence test.
分享
查看原文
大维度高频数据下系统和特质波动率的渐近性
本文将扩散过程的波动率分解为系统分量和特质分量,它们不能用单变量过程中离散采样的观测值来识别。利用大维度高频数据并假设一个因子结构,我们获得了系统波动过程和特质波动过程的拉普拉斯变换的一致估计。基于已实现的系统波动过程对和特殊波动过程对的二元拉普拉斯变换与两个边缘拉普拉斯变换乘积之间的差异,提出了波动过程两个分量的kolmogorov - smirnov型独立检验统计量。在系统波动率与特质波动率相互独立的零假设下,建立了差异的泛函中心极限定理。极限高斯过程通过模拟离散骨架过程来实现,该过程可用于定义独立性检验的近似临界区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信