A Levine–Tristram invariant for knotted tori

IF 0.6 3区 数学 Q3 MATHEMATICS
Daniel Ruberman
{"title":"A Levine–Tristram invariant for knotted\ntori","authors":"Daniel Ruberman","doi":"10.2140/agt.2022.22.2395","DOIUrl":null,"url":null,"abstract":"Echeverria recently introduced an invariant for a smoothly embedded torus in a homology $S^1\\times S^3$, using gauge theory for singular connections. We define a new topological invariant of such an embedded torus, analogous to the classical Levine-Tristram invariant of a knot. In the 3-dimensional situation, a count of singular connections on a knot complement reproduces the Levine-Tristram invariant. We compute the invariant for a number of embedded tori, and compare with what one might expect from Echeverria's invariant. For the simplest example--the product of an ordinary knot with a circle--the answers coincide. But for more general examples, the invariants are different.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"81 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2022.22.2395","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Echeverria recently introduced an invariant for a smoothly embedded torus in a homology $S^1\times S^3$, using gauge theory for singular connections. We define a new topological invariant of such an embedded torus, analogous to the classical Levine-Tristram invariant of a knot. In the 3-dimensional situation, a count of singular connections on a knot complement reproduces the Levine-Tristram invariant. We compute the invariant for a number of embedded tori, and compare with what one might expect from Echeverria's invariant. For the simplest example--the product of an ordinary knot with a circle--the answers coincide. But for more general examples, the invariants are different.
结环的Levine-Tristram不变量
Echeverria最近利用奇异连接的规范理论,为同调$S^1\乘以S^3$中的光滑嵌入环引入了一个不变量。我们定义了这种嵌入环面的一个新的拓扑不变量,类似于经典的结的Levine-Tristram不变量。在三维情况下,结补上的奇异连接计数再现了Levine-Tristram不变量。我们计算了一些嵌入环面的不变量,并与人们可能期望的Echeverria不变量进行了比较。举个最简单的例子——一个普通的结和一个圆的乘积——答案是一致的。但对于更一般的例子,不变量是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信