Replicated data types: specification, verification, optimality

S. Burckhardt, Alexey Gotsman, Hongseok Yang, M. Zawirski
{"title":"Replicated data types: specification, verification, optimality","authors":"S. Burckhardt, Alexey Gotsman, Hongseok Yang, M. Zawirski","doi":"10.1145/2535838.2535848","DOIUrl":null,"url":null,"abstract":"Geographically distributed systems often rely on replicated eventually consistent data stores to achieve availability and performance. To resolve conflicting updates at different replicas, researchers and practitioners have proposed specialized consistency protocols, called replicated data types, that implement objects such as registers, counters, sets or lists. Reasoning about replicated data types has however not been on par with comparable work on abstract data types and concurrent data types, lacking specifications, correctness proofs, and optimality results. To fill in this gap, we propose a framework for specifying replicated data types using relations over events and verifying their implementations using replication-aware simulations. We apply it to 7 existing implementations of 4 data types with nontrivial conflict-resolution strategies and optimizations (last-writer-wins register, counter, multi-value register and observed-remove set). We also present a novel technique for obtaining lower bounds on the worst-case space overhead of data type implementations and use it to prove optimality of 4 implementations. Finally, we show how to specify consistency of replicated stores with multiple objects axiomatically, in analogy to prior work on weak memory models. Overall, our work provides foundational reasoning tools to support research on replicated eventually consistent stores.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":"154 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"192","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535838.2535848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 192

Abstract

Geographically distributed systems often rely on replicated eventually consistent data stores to achieve availability and performance. To resolve conflicting updates at different replicas, researchers and practitioners have proposed specialized consistency protocols, called replicated data types, that implement objects such as registers, counters, sets or lists. Reasoning about replicated data types has however not been on par with comparable work on abstract data types and concurrent data types, lacking specifications, correctness proofs, and optimality results. To fill in this gap, we propose a framework for specifying replicated data types using relations over events and verifying their implementations using replication-aware simulations. We apply it to 7 existing implementations of 4 data types with nontrivial conflict-resolution strategies and optimizations (last-writer-wins register, counter, multi-value register and observed-remove set). We also present a novel technique for obtaining lower bounds on the worst-case space overhead of data type implementations and use it to prove optimality of 4 implementations. Finally, we show how to specify consistency of replicated stores with multiple objects axiomatically, in analogy to prior work on weak memory models. Overall, our work provides foundational reasoning tools to support research on replicated eventually consistent stores.
复制数据类型:规范、验证、最优性
地理上分布的系统通常依赖于复制的最终一致的数据存储来实现可用性和性能。为了解决不同副本上的冲突更新,研究人员和从业者提出了专门的一致性协议,称为复制数据类型,实现寄存器、计数器、集合或列表等对象。然而,关于复制数据类型的推理还不能与抽象数据类型和并发数据类型的类似工作相提并论,缺乏规范、正确性证明和最优性结果。为了填补这一空白,我们提出了一个框架,用于使用事件上的关系来指定复制的数据类型,并使用复制感知模拟来验证它们的实现。我们将其应用于4种数据类型的7种现有实现,这些实现具有重要的冲突解决策略和优化(last-writer-wins寄存器、计数器、多值寄存器和观察到的移除集)。我们还提出了一种新的技术来获得数据类型实现的最坏情况空间开销的下界,并用它来证明4种实现的最优性。最后,我们将展示如何根据公理指定具有多个对象的复制存储的一致性,这与之前关于弱内存模型的工作类似。总的来说,我们的工作提供了基本的推理工具来支持对复制最终一致存储的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信