{"title":"Material Extrusion on an Ultrasonic Air Bed for 3D Printing","authors":"Sam Keller, M. Stein, O. Ilic","doi":"10.1115/1.4063214","DOIUrl":null,"url":null,"abstract":"\n Additive manufacturing, such as 3D printing, offers unparalleled opportunities for rapid prototyping of objects, but typically requires simultaneous building of solid supports to minimize deformation and ensure contact with the printing surface. Here, we theoretically and experimentally investigate the concept of material extrusion on an “air bed” – an engineered ultrasonic acoustic field that stabilizes and supports the soft material by contactless radiation pressure force. We study the dynamics of polylactic acid (PLA) filament—a commonly used material in 3D printing—as it interacts with the acoustic potential during extrusion. We develop a numerical radiation pressure model to determine optimal configurations of ultrasonic transducers to generate acoustic fields and conditions for linear printing. We build a concept prototype that integrates an acoustic levitation array with a 3D printer and use this device to demonstrate linear extrusion on an acoustic air bed. Our results indicate that controlled interactions between acoustic fields and soft materials could offer alternative support mechanisms in additive manufacturing with potential benefits such as less material waste, fewer surface defects, and reduced material processing time.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"78 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063214","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing, such as 3D printing, offers unparalleled opportunities for rapid prototyping of objects, but typically requires simultaneous building of solid supports to minimize deformation and ensure contact with the printing surface. Here, we theoretically and experimentally investigate the concept of material extrusion on an “air bed” – an engineered ultrasonic acoustic field that stabilizes and supports the soft material by contactless radiation pressure force. We study the dynamics of polylactic acid (PLA) filament—a commonly used material in 3D printing—as it interacts with the acoustic potential during extrusion. We develop a numerical radiation pressure model to determine optimal configurations of ultrasonic transducers to generate acoustic fields and conditions for linear printing. We build a concept prototype that integrates an acoustic levitation array with a 3D printer and use this device to demonstrate linear extrusion on an acoustic air bed. Our results indicate that controlled interactions between acoustic fields and soft materials could offer alternative support mechanisms in additive manufacturing with potential benefits such as less material waste, fewer surface defects, and reduced material processing time.
期刊介绍:
The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences.
Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.