A real-time architecture for detection of diseases using social networks: design, implementation and evaluation

Mustafa Sofean, Matthew Smith
{"title":"A real-time architecture for detection of diseases using social networks: design, implementation and evaluation","authors":"Mustafa Sofean, Matthew Smith","doi":"10.1145/2309996.2310048","DOIUrl":null,"url":null,"abstract":"In this work we developed a surveillance architecture to detect diseases-related postings in social networks using Twitter as an example for a high-traffic social network. Our real-time architecture uses Twitter streaming API to crawl Twitter messages as they are posted. Data mining techniques have been used to index, extract and classify postings. Finally, we evaluate the performance of the classifier with a dataset of public health postings and also evaluate the run-time performance of whole system with respect to latency and throughput.","PeriodicalId":91270,"journal":{"name":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","volume":"14 1","pages":"309-310"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2309996.2310048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In this work we developed a surveillance architecture to detect diseases-related postings in social networks using Twitter as an example for a high-traffic social network. Our real-time architecture uses Twitter streaming API to crawl Twitter messages as they are posted. Data mining techniques have been used to index, extract and classify postings. Finally, we evaluate the performance of the classifier with a dataset of public health postings and also evaluate the run-time performance of whole system with respect to latency and throughput.
利用社会网络检测疾病的实时架构:设计、实施和评估
在这项工作中,我们开发了一个监测架构来检测社交网络中与疾病相关的帖子,以Twitter为例,作为一个高流量的社交网络。我们的实时架构使用Twitter流API来抓取发布的Twitter消息。数据挖掘技术已被用于对帖子进行索引、提取和分类。最后,我们使用公共卫生发布数据集评估分类器的性能,并评估整个系统在延迟和吞吐量方面的运行时性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信