Hae-Youn Rhyoo, Bun Yeoul Lee, Hye Kyung Bae Yu, Young Keun Chung
{"title":"Study of the reactivity of ClCo(PPh3)3","authors":"Hae-Youn Rhyoo, Bun Yeoul Lee, Hye Kyung Bae Yu, Young Keun Chung","doi":"10.1016/0304-5102(94)85005-4","DOIUrl":null,"url":null,"abstract":"<div><p>The catalytic activity of ClCo(PPh<sub>3</sub>)<sub>3</sub> in oligomerization of alkynes and reduction of carbonyl compounds has been investigated. Monosubstituted alkynes with an electron withdrawing group give quantitative yields of arene derivatives when reacted with 5 mol% of ClCo(PPh<sub>3</sub>)<sub>3</sub>. Cyclotrimerization of disubstituted alkynes with at least one electron withdrawing group requires the addition of NaBPh<sub>4</sub>. In the oligomerization of phenylacetylene, cyclotrimerization and linear dimerization are in competition. However, when the reaction is run in the presence of 1.2 equiv. of NaOMe at room temperature, only linear dimerization is observed. Diethyl allylpropargylmalonate also cyclodimerizes or codimerizes with diphenylacetylene by catalytic amount of ClCo(PPh<sub>3</sub>)<sub>3</sub> in the presence of NaOEt. Reaction of a variety of carbonyl compounds with 5 mol% of ClCo(PPh<sub>3</sub>)<sub>3</sub> in <em>i</em>-propanol leads to the reduction of the compounds to the corresponding alcohols. The reaction requires the addition of NaH which produces (<em>i</em>-PrO)Na in situ. The role of alkoxides or NaBPh<sub>4</sub> in ClCo(PPh<sub>3</sub>)<sub>3</sub> catalyzed oligomerization of alkynes or reduction of carbonyl compounds is discussed.</p></div>","PeriodicalId":16567,"journal":{"name":"分子催化","volume":"92 1","pages":"Pages 41-49"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0304-5102(94)85005-4","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"分子催化","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0304510294850054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 20
Abstract
The catalytic activity of ClCo(PPh3)3 in oligomerization of alkynes and reduction of carbonyl compounds has been investigated. Monosubstituted alkynes with an electron withdrawing group give quantitative yields of arene derivatives when reacted with 5 mol% of ClCo(PPh3)3. Cyclotrimerization of disubstituted alkynes with at least one electron withdrawing group requires the addition of NaBPh4. In the oligomerization of phenylacetylene, cyclotrimerization and linear dimerization are in competition. However, when the reaction is run in the presence of 1.2 equiv. of NaOMe at room temperature, only linear dimerization is observed. Diethyl allylpropargylmalonate also cyclodimerizes or codimerizes with diphenylacetylene by catalytic amount of ClCo(PPh3)3 in the presence of NaOEt. Reaction of a variety of carbonyl compounds with 5 mol% of ClCo(PPh3)3 in i-propanol leads to the reduction of the compounds to the corresponding alcohols. The reaction requires the addition of NaH which produces (i-PrO)Na in situ. The role of alkoxides or NaBPh4 in ClCo(PPh3)3 catalyzed oligomerization of alkynes or reduction of carbonyl compounds is discussed.
期刊介绍:
Journal of Molecular Catalysis (China) is a bimonthly journal, founded in 1987. It is a bimonthly journal, founded in 1987, sponsored by Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, under the supervision of Chinese Academy of Sciences, and published by Science Publishing House, which is a scholarly journal openly circulated both at home and abroad. The journal mainly reports the latest progress and research results on molecular catalysis. It contains academic papers, research briefs, research reports and progress reviews. The content focuses on coordination catalysis, enzyme catalysis, light-ribbed catalysis, stereochemistry in catalysis, catalytic reaction mechanism and kinetics, the study of catalyst surface states and the application of quantum chemistry in catalysis. We also provide contributions on the activation, deactivation and regeneration of homogeneous catalysts, solidified homogeneous catalysts and solidified enzyme catalysts in industrial catalytic processes, as well as on the optimisation and characterisation of catalysts for new catalytic processes.
The main target readers are scientists and postgraduates working in catalysis in research institutes, industrial and mining enterprises, as well as teachers and students of chemistry and chemical engineering departments in colleges and universities. Contributions from related professionals are welcome.