{"title":"Discretization in Noncommutative Field Theory","authors":"C. Acatrinei","doi":"10.7546/giq-20-2019-65-78","DOIUrl":null,"url":null,"abstract":"A discretization scheme provided by the noncommutativity of space is reviewed. In the representation chosen here the radial coordinate is rendered discrete, allowing fields to be put on a lattice in a natural way. Noncommutativity is traded for a controllable type of nonlocality of the field dynamics, which in turn allows fermions to be free of lattice artefacts. Exact, singularity-free solutions are found interpreted, and their continuum limit is well-defined. MSC : 33E20, 39A12, 33C80, 33C45, 05A10","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/giq-20-2019-65-78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
A discretization scheme provided by the noncommutativity of space is reviewed. In the representation chosen here the radial coordinate is rendered discrete, allowing fields to be put on a lattice in a natural way. Noncommutativity is traded for a controllable type of nonlocality of the field dynamics, which in turn allows fermions to be free of lattice artefacts. Exact, singularity-free solutions are found interpreted, and their continuum limit is well-defined. MSC : 33E20, 39A12, 33C80, 33C45, 05A10