Multi-label Image Recognition by Recurrently Discovering Attentional Regions

Zhouxia Wang, Tianshui Chen, Guanbin Li, Ruijia Xu, Liang Lin
{"title":"Multi-label Image Recognition by Recurrently Discovering Attentional Regions","authors":"Zhouxia Wang, Tianshui Chen, Guanbin Li, Ruijia Xu, Liang Lin","doi":"10.1109/ICCV.2017.58","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel deep architecture to address multi-label image recognition, a fundamental and practical task towards general visual understanding. Current solutions for this task usually rely on an extra step of extracting hypothesis regions (i.e., region proposals), resulting in redundant computation and sub-optimal performance. In this work, we achieve the interpretable and contextualized multi-label image classification by developing a recurrent memorized-attention module. This module consists of two alternately performed components: i) a spatial transformer layer to locate attentional regions from the convolutional feature maps in a region-proposal-free way and ii) an LSTM (Long-Short Term Memory) sub-network to sequentially predict semantic labeling scores on the located regions while capturing the global dependencies of these regions. The LSTM also output the parameters for computing the spatial transformer. On large-scale benchmarks of multi-label image classification (e.g., MS-COCO and PASCAL VOC 07), our approach demonstrates superior performances over other existing state-of-the-arts in both accuracy and efficiency.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"18 1","pages":"464-472"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"238","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 238

Abstract

This paper proposes a novel deep architecture to address multi-label image recognition, a fundamental and practical task towards general visual understanding. Current solutions for this task usually rely on an extra step of extracting hypothesis regions (i.e., region proposals), resulting in redundant computation and sub-optimal performance. In this work, we achieve the interpretable and contextualized multi-label image classification by developing a recurrent memorized-attention module. This module consists of two alternately performed components: i) a spatial transformer layer to locate attentional regions from the convolutional feature maps in a region-proposal-free way and ii) an LSTM (Long-Short Term Memory) sub-network to sequentially predict semantic labeling scores on the located regions while capturing the global dependencies of these regions. The LSTM also output the parameters for computing the spatial transformer. On large-scale benchmarks of multi-label image classification (e.g., MS-COCO and PASCAL VOC 07), our approach demonstrates superior performances over other existing state-of-the-arts in both accuracy and efficiency.
递归发现注意区域的多标签图像识别
本文提出了一种新的深度架构来解决多标签图像识别,这是实现一般视觉理解的基础和实际任务。目前该任务的解决方案通常依赖于提取假设区域(即区域建议)的额外步骤,导致冗余计算和次优性能。在这项工作中,我们通过开发一个循环记忆注意模块来实现可解释和上下文化的多标签图像分类。该模块由两个交替执行的组件组成:i)空间转换层,用于以无区域提议的方式从卷积特征映射中定位注意区域;ii) LSTM(长短期记忆)子网络,用于顺序预测所定位区域上的语义标记分数,同时捕获这些区域的全局依赖关系。LSTM还输出用于计算空间变压器的参数。在多标签图像分类的大规模基准测试中(例如MS-COCO和PASCAL VOC 07),我们的方法在准确性和效率方面都优于其他现有的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信