Detecting Influential Users in Social Networks Based on Bipartite Comments Graph

R. Pastukhov, Mikhail Drobyshevskiy, D. Turdakov
{"title":"Detecting Influential Users in Social Networks Based on Bipartite Comments Graph","authors":"R. Pastukhov, Mikhail Drobyshevskiy, D. Turdakov","doi":"10.15514/ispras-2022-34(5)-8","DOIUrl":null,"url":null,"abstract":"With the development of online social networks, the task of identifying users who have a great influence on other participants in social networks is becoming increasingly important. An important source of information is user comments on content created by other users. The paper proposes a method for determining influence based on a bipartite user-comment-content graph. It incorporates information about text messages and the reactions of other users to them. In addition, we propose a method for identifying user communities in such a graph based on common interests. Experiments on data collections from VKontakte and YouTube networks show the correlation between user activity and influence, however, the most active commenters are not necessarily the most influential. Community analysis shows a positive correlation between the size of a community, the number of most influential users in it, and the average influence of community users.","PeriodicalId":33459,"journal":{"name":"Trudy Instituta sistemnogo programmirovaniia RAN","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trudy Instituta sistemnogo programmirovaniia RAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15514/ispras-2022-34(5)-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of online social networks, the task of identifying users who have a great influence on other participants in social networks is becoming increasingly important. An important source of information is user comments on content created by other users. The paper proposes a method for determining influence based on a bipartite user-comment-content graph. It incorporates information about text messages and the reactions of other users to them. In addition, we propose a method for identifying user communities in such a graph based on common interests. Experiments on data collections from VKontakte and YouTube networks show the correlation between user activity and influence, however, the most active commenters are not necessarily the most influential. Community analysis shows a positive correlation between the size of a community, the number of most influential users in it, and the average influence of community users.
基于二部评论图的社交网络影响力用户检测
随着在线社交网络的发展,识别对社交网络中其他参与者有重大影响的用户的任务变得越来越重要。一个重要的信息来源是用户对其他用户创建的内容的评论。提出了一种基于二部用户评论-内容图的影响力判定方法。它包含有关短信的信息以及其他用户对短信的反应。此外,我们提出了一种基于共同兴趣的用户社区识别方法。对VKontakte和YouTube网络收集的数据进行的实验表明,用户活动与影响力之间存在相关性,然而,最活跃的评论并不一定是最具影响力的。社区分析表明,社区的规模、最有影响力的用户数量和社区用户的平均影响力之间存在正相关关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
18
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信