{"title":"Cluster-based color space optimizations","authors":"Cheryl Lau, W. Heidrich, Rafał K. Mantiuk","doi":"10.1109/ICCV.2011.6126366","DOIUrl":null,"url":null,"abstract":"Transformations between different color spaces and gamuts are ubiquitous operations performed on images. Often, these transformations involve information loss, for example when mapping from color to grayscale for printing, from multispectral or multiprimary data to tristimulus spaces, or from one color gamut to another. In all these applications, there exists a straightforward “natural” mapping from the source space to the target space, but the mapping is not bijective, resulting in information loss due to metamerism and similar effects. We propose a cluster-based approach for optimizing the transformation for individual images in a way that preserves as much of the information as possible from the source space while staying as faithful as possible to the natural mapping. Our approach can be applied to a host of color transformation problems including color to gray, gamut mapping, conversion of multispectral and multiprimary data to tristimulus colors, and image optimization for color deficient viewers.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"45 1","pages":"1172-1179"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58
Abstract
Transformations between different color spaces and gamuts are ubiquitous operations performed on images. Often, these transformations involve information loss, for example when mapping from color to grayscale for printing, from multispectral or multiprimary data to tristimulus spaces, or from one color gamut to another. In all these applications, there exists a straightforward “natural” mapping from the source space to the target space, but the mapping is not bijective, resulting in information loss due to metamerism and similar effects. We propose a cluster-based approach for optimizing the transformation for individual images in a way that preserves as much of the information as possible from the source space while staying as faithful as possible to the natural mapping. Our approach can be applied to a host of color transformation problems including color to gray, gamut mapping, conversion of multispectral and multiprimary data to tristimulus colors, and image optimization for color deficient viewers.