The achromatic number of a graph

Frnak Harary , Stephen Hedetniemi
{"title":"The achromatic number of a graph","authors":"Frnak Harary ,&nbsp;Stephen Hedetniemi","doi":"10.1016/S0021-9800(70)80072-2","DOIUrl":null,"url":null,"abstract":"<div><p>The concept of coloring a graph has been shown to be subsumed by that of an homomorphism. This led in [3] to the definition of a complete <em>n</em>-coloring of a graph <em>G</em> and suggested therefore a new invariant, which we now call the “achromatic number” <em>ψ(G)</em>. While the chromatic number <em>χ(G)</em> is the minimum number of colors required for (a complete coloring of) the points of <em>G</em>, the achromatic number is the maximum such number. We obtain several bounds for <em>ψ(G)</em> in terms of other invariants of a graph, and in particular we show that, for any graph <em>G</em> having <em>p</em> points, <em><sub>x</sub>(G)+ͨ(G)¯⩽p+1</em>, a result which generalizes a theorem of Nordhaus and Gaddum [4].</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"8 2","pages":"Pages 154-161"},"PeriodicalIF":0.0000,"publicationDate":"1970-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80072-2","citationCount":"101","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

Abstract

The concept of coloring a graph has been shown to be subsumed by that of an homomorphism. This led in [3] to the definition of a complete n-coloring of a graph G and suggested therefore a new invariant, which we now call the “achromatic number” ψ(G). While the chromatic number χ(G) is the minimum number of colors required for (a complete coloring of) the points of G, the achromatic number is the maximum such number. We obtain several bounds for ψ(G) in terms of other invariants of a graph, and in particular we show that, for any graph G having p points, x(G)+ͨ(G)¯⩽p+1, a result which generalizes a theorem of Nordhaus and Gaddum [4].

图的消色差数
图上色的概念已经被证明包含在同态的概念中。这导致了在[3]中对图G的完全n着色的定义,并因此提出了一个新的不变量,我们现在称之为“消色差数”ψ(G)。虽然色数χ(G)是G的点(完全着色)所需的最小颜色数,但消色差数是最大颜色数。我们利用图的其他不变量,得到了ψ(G)的若干界,特别证明了对于任意有p个点的图G, x(G)+ (G)¯≤p+1,推广了Nordhaus和Gaddum[4]的一个定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信