{"title":"Pulse-transfer function of the intensity-curvature functional: Applications in magnetic resonance angiography of the human brain","authors":"Carlo Ciulla","doi":"10.1142/s2737599422500013","DOIUrl":null,"url":null,"abstract":"This paper reports additional evidence of the high-pass filtering properties of the intensity-curvature functional (ICF). Magnetic resonance angiography (MRA) of the human brain is used to calculate its ICF. MRA and ICF are direct Z-transformed. The pulsetransfer function (PTF) of the ICF is defined as the inverse Z-transform of the ratio between Z-space of ICF and Z-space of MRA. The image space of PTF is calculated and is direct Z-transformed. MRA is reconstructed through inverse Z-transform of the ratio between Z-space of ICF and Z-space of PTF. MRA reconstruction proves correctness of the approximated approach and adds evidence to the assumption that ICF is a high-pass filter. This research provides two novelties: (1) additional evidence that ICF is a high-pass filter and (2) a medical image processing technique that proves correct that the PTF of a high-pass filter (ICF) can be approximated by the ratio between Z-space of ICF and Z-space of MRA. It follows that MRA can be reconstructed using the inverse Z-transform of the ratio between Z-space of ICF and Z-space of PTF.","PeriodicalId":29682,"journal":{"name":"Innovation and Emerging Technologies","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovation and Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2737599422500013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports additional evidence of the high-pass filtering properties of the intensity-curvature functional (ICF). Magnetic resonance angiography (MRA) of the human brain is used to calculate its ICF. MRA and ICF are direct Z-transformed. The pulsetransfer function (PTF) of the ICF is defined as the inverse Z-transform of the ratio between Z-space of ICF and Z-space of MRA. The image space of PTF is calculated and is direct Z-transformed. MRA is reconstructed through inverse Z-transform of the ratio between Z-space of ICF and Z-space of PTF. MRA reconstruction proves correctness of the approximated approach and adds evidence to the assumption that ICF is a high-pass filter. This research provides two novelties: (1) additional evidence that ICF is a high-pass filter and (2) a medical image processing technique that proves correct that the PTF of a high-pass filter (ICF) can be approximated by the ratio between Z-space of ICF and Z-space of MRA. It follows that MRA can be reconstructed using the inverse Z-transform of the ratio between Z-space of ICF and Z-space of PTF.