Order Selection Tests with Multiply-Imputed Data

Fabrizio Consentino, G. Claeskens
{"title":"Order Selection Tests with Multiply-Imputed Data","authors":"Fabrizio Consentino, G. Claeskens","doi":"10.2139/ssrn.1430275","DOIUrl":null,"url":null,"abstract":"We develop nonparametric tests for the null hypothesis that a function has a prescribed form, to apply to data sets with missing observations. Omnibus nonparametric tests do not need to specify a particular alternative parametric form, and have power against a large range of alternatives, the order selection tests that we study are one example. We extend such order selection tests to be applicable in the context of missing data. In particular, we consider likelihood-based order selection tests for multiply-imputed data. A simulation study and data analysis illustrate the performance of the tests. A model selection method in the style of Akaike's information criterion for multiply imputed datasets results along the same lines.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1430275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop nonparametric tests for the null hypothesis that a function has a prescribed form, to apply to data sets with missing observations. Omnibus nonparametric tests do not need to specify a particular alternative parametric form, and have power against a large range of alternatives, the order selection tests that we study are one example. We extend such order selection tests to be applicable in the context of missing data. In particular, we consider likelihood-based order selection tests for multiply-imputed data. A simulation study and data analysis illustrate the performance of the tests. A model selection method in the style of Akaike's information criterion for multiply imputed datasets results along the same lines.
使用多重输入数据的订单选择测试
我们开发了零假设的非参数检验,即函数具有规定的形式,以应用于缺失观测值的数据集。综合非参数检验不需要指定一个特定的可选参数形式,并且有能力对付大范围的可选参数,我们研究的顺序选择检验就是一个例子。我们扩展了这种顺序选择测试,使其适用于缺失数据的情况。特别是,我们考虑了基于似然的顺序选择测试的多重输入数据。仿真研究和数据分析验证了试验的有效性。一种基于赤池信息准则的模型选择方法对多个输入数据集的结果大致相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信