H. Boughedda, T. Hacib, Y. Bihan, M. Chelabi, H. Acikgoz
{"title":"Electromagnetic Acoustic Transducer for Detection and Characterization of Hidden Cracks inside Stainless Steel Material","authors":"H. Boughedda, T. Hacib, Y. Bihan, M. Chelabi, H. Acikgoz","doi":"10.47037/2021.aces.j.360818","DOIUrl":null,"url":null,"abstract":"─ Industrial structure are exposed to microstructural changes caused by fatigue cracking, corrosion and thermal aging. Generally, a hidden crack is very dangerous because it is difficult to detect by NonDestructive Evaluation (NDE) techniques. This paper presents a new approach to estimate the hidden cracks dimensions inside a stainless steel plate based on the EMAT signal. The received signal by EMAT is simulated using the Finite Element Method (FEM). Then, the identification of the hidden crack sizes is performed via the combination of two techniques; the first one is the Time-of-Flight (ToF) technique which was applied to estimate the crack height by the evaluation of the difference between the ToF of the healthy form and the defective form. Then, the crack width is estimated by the solution of the inverse problem from the received signal based on a meta-heuristic algorithm called Teaching learning Based optimization (TLBO). The obtained results illustrate the sensitivity of the EMAT sensor to the variation of the crack sizes. Moreover, the quantitative evaluation of the cracks dimensions, show clearly the efficiency and reliability of the adopted approache. Index Terms ─ Characterization of hidden cracks, FEM, NDE, Time-of-Flight, TLBO algorithm.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"23 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2021.aces.j.360818","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
─ Industrial structure are exposed to microstructural changes caused by fatigue cracking, corrosion and thermal aging. Generally, a hidden crack is very dangerous because it is difficult to detect by NonDestructive Evaluation (NDE) techniques. This paper presents a new approach to estimate the hidden cracks dimensions inside a stainless steel plate based on the EMAT signal. The received signal by EMAT is simulated using the Finite Element Method (FEM). Then, the identification of the hidden crack sizes is performed via the combination of two techniques; the first one is the Time-of-Flight (ToF) technique which was applied to estimate the crack height by the evaluation of the difference between the ToF of the healthy form and the defective form. Then, the crack width is estimated by the solution of the inverse problem from the received signal based on a meta-heuristic algorithm called Teaching learning Based optimization (TLBO). The obtained results illustrate the sensitivity of the EMAT sensor to the variation of the crack sizes. Moreover, the quantitative evaluation of the cracks dimensions, show clearly the efficiency and reliability of the adopted approache. Index Terms ─ Characterization of hidden cracks, FEM, NDE, Time-of-Flight, TLBO algorithm.
期刊介绍:
The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study.
The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed.
A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected.
The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.