The future of text mining in genome-based clinical research

Christian Gieger, Hartwig Deneke, Juliane Fluck
{"title":"The future of text mining in genome-based clinical research","authors":"Christian Gieger,&nbsp;Hartwig Deneke,&nbsp;Juliane Fluck","doi":"10.1016/S1478-5382(03)02336-9","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient information retrieval and extraction is a major challenge in molecular biology and genome-based clinical research. In addition, there is an increasing demand to combine information from different resources and across different disciplines in life sciences. Unfortunately, a large proportion of this information is only available in scientific articles. Moreover, the volume of literature is growing almost exponentially. Text mining provides methods to retrieve and extract information contained in free-text automatically. Here, we discuss the challenges and limitations of text mining in biology and medicine, including unsolved problems and necessary developments.</p></div>","PeriodicalId":9227,"journal":{"name":"Biosilico","volume":"1 3","pages":"Pages 97-102"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1478-5382(03)02336-9","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosilico","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1478538203023369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Efficient information retrieval and extraction is a major challenge in molecular biology and genome-based clinical research. In addition, there is an increasing demand to combine information from different resources and across different disciplines in life sciences. Unfortunately, a large proportion of this information is only available in scientific articles. Moreover, the volume of literature is growing almost exponentially. Text mining provides methods to retrieve and extract information contained in free-text automatically. Here, we discuss the challenges and limitations of text mining in biology and medicine, including unsolved problems and necessary developments.

基于基因组的临床研究中文本挖掘的未来
高效的信息检索和提取是分子生物学和基于基因组的临床研究面临的主要挑战。此外,在生命科学中,将来自不同资源和不同学科的信息结合起来的需求越来越大。不幸的是,这些信息中的很大一部分只能在科学文章中获得。此外,文学作品的数量几乎呈指数级增长。文本挖掘提供了自动检索和提取自由文本中包含的信息的方法。在这里,我们讨论了生物学和医学中文本挖掘的挑战和局限性,包括未解决的问题和必要的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信