Alfonso Aranda, Joël M. H. Karel, P. Bonizzi, R. Peeters
{"title":"Acute MI Detection Derived From ECG Parameters Distribution","authors":"Alfonso Aranda, Joël M. H. Karel, P. Bonizzi, R. Peeters","doi":"10.23919/CinC49843.2019.9005742","DOIUrl":null,"url":null,"abstract":"Several studies in the past have evaluated the use of different ECG-based features to diagnose acute myocardial infarction (AMI). This was generally done by looking at how well a feature reflects differences between baseline (no AMI) and AMI situations. This approach tends to overlook the progress of AMI and to underestimate false positives when implemented into a continuous monitoring setting and therefore appears inadequate for it. This has hindered the adoption of those methods in the clinical practice. In this research, we present a novel set of parameters for the dynamic assessment of AMI condition. Those parameters are obtained by analyzing the changes over time in the distribution properties of ECG-based features.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"22 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Several studies in the past have evaluated the use of different ECG-based features to diagnose acute myocardial infarction (AMI). This was generally done by looking at how well a feature reflects differences between baseline (no AMI) and AMI situations. This approach tends to overlook the progress of AMI and to underestimate false positives when implemented into a continuous monitoring setting and therefore appears inadequate for it. This has hindered the adoption of those methods in the clinical practice. In this research, we present a novel set of parameters for the dynamic assessment of AMI condition. Those parameters are obtained by analyzing the changes over time in the distribution properties of ECG-based features.