Acute MI Detection Derived From ECG Parameters Distribution

Alfonso Aranda, Joël M. H. Karel, P. Bonizzi, R. Peeters
{"title":"Acute MI Detection Derived From ECG Parameters Distribution","authors":"Alfonso Aranda, Joël M. H. Karel, P. Bonizzi, R. Peeters","doi":"10.23919/CinC49843.2019.9005742","DOIUrl":null,"url":null,"abstract":"Several studies in the past have evaluated the use of different ECG-based features to diagnose acute myocardial infarction (AMI). This was generally done by looking at how well a feature reflects differences between baseline (no AMI) and AMI situations. This approach tends to overlook the progress of AMI and to underestimate false positives when implemented into a continuous monitoring setting and therefore appears inadequate for it. This has hindered the adoption of those methods in the clinical practice. In this research, we present a novel set of parameters for the dynamic assessment of AMI condition. Those parameters are obtained by analyzing the changes over time in the distribution properties of ECG-based features.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"22 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Several studies in the past have evaluated the use of different ECG-based features to diagnose acute myocardial infarction (AMI). This was generally done by looking at how well a feature reflects differences between baseline (no AMI) and AMI situations. This approach tends to overlook the progress of AMI and to underestimate false positives when implemented into a continuous monitoring setting and therefore appears inadequate for it. This has hindered the adoption of those methods in the clinical practice. In this research, we present a novel set of parameters for the dynamic assessment of AMI condition. Those parameters are obtained by analyzing the changes over time in the distribution properties of ECG-based features.
基于心电参数分布的急性心肌梗死检测
过去的一些研究已经评估了使用不同的心电图为基础的特征来诊断急性心肌梗死(AMI)。这通常是通过查看一个特性如何很好地反映基线(无AMI)和AMI情况之间的差异来完成的。这种方法往往会忽略AMI的进展,并在实施连续监测设置时低估误报,因此似乎不适合AMI。这阻碍了这些方法在临床实践中的应用。在这项研究中,我们提出了一套新的AMI动态评估参数。这些参数是通过分析基于ecg的特征分布属性随时间的变化而得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信