Exact Solution of the relativistic Schroedinger equation for the central potential

V. Srivastava, S. Bose
{"title":"Exact Solution of the relativistic Schroedinger equation for the central potential","authors":"V. Srivastava, S. Bose","doi":"10.9790/4861-0903012527","DOIUrl":null,"url":null,"abstract":"A set of exact solutions of the relativistic Schroedinger equation for central potential ) , where a and b are parameters of the given potential are to be obtained by using a suitable ansatz. For each solution, a separate relation interrelating the parameters of the potential and the orbital angular momentum quantum no. . The eigenfunctions obtained here are normalizable. The fractional power potential is relevant in connection with quark model of hadrons and some other branches of physics like particle and nuclear physics.","PeriodicalId":14502,"journal":{"name":"IOSR Journal of Applied Physics","volume":"31 1","pages":"25-27"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOSR Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9790/4861-0903012527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A set of exact solutions of the relativistic Schroedinger equation for central potential ) , where a and b are parameters of the given potential are to be obtained by using a suitable ansatz. For each solution, a separate relation interrelating the parameters of the potential and the orbital angular momentum quantum no. . The eigenfunctions obtained here are normalizable. The fractional power potential is relevant in connection with quark model of hadrons and some other branches of physics like particle and nuclear physics.
中心势的相对论薛定谔方程的精确解
中心势的相对论性薛定谔方程(其中A和b是给定势的参数)的一组精确解将通过适当的方差得到。对于每一个解,一个单独的关系相互关联的参数的势和轨道角动量量子数。这里得到的特征函数是可归一化的。分数功率势与强子的夸克模型以及粒子物理和核物理等物理学分支有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信