Technical Perspective: k-Shape: Efficient and Accurate Clustering of Time Series

Z. Ives
{"title":"Technical Perspective: k-Shape: Efficient and Accurate Clustering of Time Series","authors":"Z. Ives","doi":"10.1145/2949741.2949757","DOIUrl":null,"url":null,"abstract":"Database research frequently cuts across many layers of abstraction (from formal foundations to algorithms to languages to systems) and the software stack (from data storage and distribution to runtime systems and query optimizers). It does this in a way that is specialized to a particular class of data and workloads. Over the decades, we have seen this pattern applied to enterprise data, persistent objects, Web data, sensor data, data streams, and so on. Each time, the community has developed extensions to algebraic query primitives, specialized implementation techniques (index structures, pattern detection algorithms, update and consistency mechanisms, etc.), benchmarks, and new optimization techniques.","PeriodicalId":21740,"journal":{"name":"SIGMOD Rec.","volume":"8 1","pages":"68"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGMOD Rec.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2949741.2949757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Database research frequently cuts across many layers of abstraction (from formal foundations to algorithms to languages to systems) and the software stack (from data storage and distribution to runtime systems and query optimizers). It does this in a way that is specialized to a particular class of data and workloads. Over the decades, we have seen this pattern applied to enterprise data, persistent objects, Web data, sensor data, data streams, and so on. Each time, the community has developed extensions to algebraic query primitives, specialized implementation techniques (index structures, pattern detection algorithms, update and consistency mechanisms, etc.), benchmarks, and new optimization techniques.
技术视角:k形:时间序列高效准确聚类
数据库研究经常跨越许多抽象层(从形式基础到算法、语言到系统)和软件堆栈(从数据存储和分发到运行时系统和查询优化器)。它以一种专门针对特定类型的数据和工作负载的方式完成此任务。几十年来,我们已经看到这种模式应用于企业数据、持久对象、Web数据、传感器数据、数据流等。每次,社区都开发了代数查询原语的扩展、专门的实现技术(索引结构、模式检测算法、更新和一致性机制等)、基准测试和新的优化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信