Analisis Komentar Potensial pada Social Commerce Instagram Menggunakan TF-IDF

Rizqa Luviana Musyarofah, Ema Utami, Suwanto Raharjo
{"title":"Analisis Komentar Potensial pada Social Commerce Instagram Menggunakan TF-IDF","authors":"Rizqa Luviana Musyarofah, Ema Utami, Suwanto Raharjo","doi":"10.30864/eksplora.v9i2.360","DOIUrl":null,"url":null,"abstract":"Komentar di Instagram sangat berharga, informatif dan sangat membantu. Bagi penjual komentar adalah fitur yang menunjukkan respons pengguna Instagram terhadap produk yang ditawarkan, dan melalui fitur komentar penjual dapat menemukan pelanggan yang potensial. Manfaat tersebut diperoleh apabila penjual melakukan analisis pada komentar di toko Instagram-nya. Sangat dimungkinkan untuk menganalisis secara manual apabila data komentar pada tokonya berjumlah sedikit namun apabila komentar yang dimiliki banyak maka akan lebih cepat apabila menggunakan sistem. Banyaknya spam dapat mengganggu informasi yang ada pada komentar, sehingga tidak menjamin banyaknya komentar pada sebuah posting-an maka banyak pula yang ingin membeli produk tersebut. Oleh karena itu dibutuhkan sistem yang bisa memfilter komentar agar penjual dapat menemukan pelanggan yang tepat untuk produknya. Penelitian ini menggunakan algoritma TF-IDF untuk mengklasifikasikan komentar ke dalam 2 kelas (potensial dan tidak potensial) dan memperoleh akurasi sebesar 80%, presisi 0,76 dan recall 0,94. Berdasarkan hasil penelitian pada 294 komentar, 27% di antaranya adalah komentar tidak potensial. Kata yang menunjukkan minat beli seseorang adalah “berapa”, ”kak”, ”ada”, dan ”tidak”, sedangkan kata dominan pada komentar tidak potensial adalah kata “mention” yang menunjukkan aktivitas mention.","PeriodicalId":34236,"journal":{"name":"Jurnal Eksplora Informatika","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Eksplora Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30864/eksplora.v9i2.360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Komentar di Instagram sangat berharga, informatif dan sangat membantu. Bagi penjual komentar adalah fitur yang menunjukkan respons pengguna Instagram terhadap produk yang ditawarkan, dan melalui fitur komentar penjual dapat menemukan pelanggan yang potensial. Manfaat tersebut diperoleh apabila penjual melakukan analisis pada komentar di toko Instagram-nya. Sangat dimungkinkan untuk menganalisis secara manual apabila data komentar pada tokonya berjumlah sedikit namun apabila komentar yang dimiliki banyak maka akan lebih cepat apabila menggunakan sistem. Banyaknya spam dapat mengganggu informasi yang ada pada komentar, sehingga tidak menjamin banyaknya komentar pada sebuah posting-an maka banyak pula yang ingin membeli produk tersebut. Oleh karena itu dibutuhkan sistem yang bisa memfilter komentar agar penjual dapat menemukan pelanggan yang tepat untuk produknya. Penelitian ini menggunakan algoritma TF-IDF untuk mengklasifikasikan komentar ke dalam 2 kelas (potensial dan tidak potensial) dan memperoleh akurasi sebesar 80%, presisi 0,76 dan recall 0,94. Berdasarkan hasil penelitian pada 294 komentar, 27% di antaranya adalah komentar tidak potensial. Kata yang menunjukkan minat beli seseorang adalah “berapa”, ”kak”, ”ada”, dan ”tidak”, sedangkan kata dominan pada komentar tidak potensial adalah kata “mention” yang menunjukkan aktivitas mention.
使用TF-IDF对Instagram社交商务的潜在评论分析
Instagram上的评论很有价值,信息丰富,也很有帮助。对于评论者来说,这是Instagram用户对该产品的反应的一种功能,通过这些评论可以找到潜在客户。当售货员在instagram上对注释进行分析时,就会得到这样的好处。当评论数据很少时,可以手动分析垃圾邮件的数量可能会干扰评论的信息,并不能保证帖子上的评论数量,因此许多人想购买这个产品。因此,需要一个系统来过滤评论,以便卖方能够为其产品找到合适的客户。这项研究使用TF-IDF算法将评论分为两个类(潜力和潜力),获得80%的准确性、精度和0.76分的精度和召回率为0.94分。根据294条评论的研究结果,其中27%是潜在的。表示对某人感兴趣的单词是“how”、“kak”、“ada”和“no”,而评论的主要单词是“mention”,意为“mention”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信