Crystal structure of the solute-binding protein BxlE from Streptomyces thermoviolaceus OPC-520 complexed with xylobiose

K. Tomoo, Y. Miki, H. Morioka, Kiho Seike, T. Ishida, Sadao Ikenishi, K. Miyamoto, T. Hasegawa, A. Yamano, K. Hamada, H. Tsujibo
{"title":"Crystal structure of the solute-binding protein BxlE from Streptomyces thermoviolaceus OPC-520 complexed with xylobiose","authors":"K. Tomoo, Y. Miki, H. Morioka, Kiho Seike, T. Ishida, Sadao Ikenishi, K. Miyamoto, T. Hasegawa, A. Yamano, K. Hamada, H. Tsujibo","doi":"10.1093/jb/mvw097","DOIUrl":null,"url":null,"abstract":"BxlE from Streptomyces thermoviolaceus OPC-520 is a xylo-oligosaccharide (mainly xylobiose)-binding protein that serves as the initial receptor for the bacterial ABC-type xylo-oligosaccharide transport system. To determine the ligand-binding mechanism of BxlE, X-ray structures of ligand-free (open form) and ligand (xylobiose)-bound (closed form) BxlE were determined at 1.85 Å resolution. BxlE consists of two globular domains that are linked by two β-strands, with the cleft at the interface of the two domains creating the ligand-binding pocket. In the ligand-free open form, this pocket consists of a U-shaped and negatively charged groove located between the two domains. In the xylobiose-bound closed form of BxlE, both the N and C domains move to fold the ligand without conformational changes in either domain. Xylobiose is buried in the groove and wrapped by the N-domain mainly via hydrogen bond interactions and by the C-domain primarily via non-polar interactions with Trp side chains. In addition to the concave shape matching the binding of xylobiose, an inter-domain salt bridge between Asp-47 and Lys-294 limits the space in the ligand-binding site. This domain-stabilized mechanism of ligand binding to BxlE is a unique feature that is not observed with other solute-binding proteins.","PeriodicalId":22605,"journal":{"name":"The Journal of Biochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jb/mvw097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

BxlE from Streptomyces thermoviolaceus OPC-520 is a xylo-oligosaccharide (mainly xylobiose)-binding protein that serves as the initial receptor for the bacterial ABC-type xylo-oligosaccharide transport system. To determine the ligand-binding mechanism of BxlE, X-ray structures of ligand-free (open form) and ligand (xylobiose)-bound (closed form) BxlE were determined at 1.85 Å resolution. BxlE consists of two globular domains that are linked by two β-strands, with the cleft at the interface of the two domains creating the ligand-binding pocket. In the ligand-free open form, this pocket consists of a U-shaped and negatively charged groove located between the two domains. In the xylobiose-bound closed form of BxlE, both the N and C domains move to fold the ligand without conformational changes in either domain. Xylobiose is buried in the groove and wrapped by the N-domain mainly via hydrogen bond interactions and by the C-domain primarily via non-polar interactions with Trp side chains. In addition to the concave shape matching the binding of xylobiose, an inter-domain salt bridge between Asp-47 and Lys-294 limits the space in the ligand-binding site. This domain-stabilized mechanism of ligand binding to BxlE is a unique feature that is not observed with other solute-binding proteins.
热紫链霉菌OPC-520溶质结合蛋白BxlE与木糖糖络合的晶体结构
来自热紫链霉菌OPC-520的BxlE是一种低聚木糖(主要是木糖二糖)结合蛋白,是细菌abc型低聚木糖运输系统的初始受体。为了确定BxlE的配体结合机制,在1.85 Å分辨率下测定了无配体(开放形式)和配体(木糖糖)结合(封闭形式)的BxlE的x射线结构。BxlE由两个球状结构域组成,它们由两条β-链连接,两个结构域的界面上的裂缝形成了配体结合袋。在无配体的开放形式下,这个口袋由位于两个结构域之间的u形带负电荷的凹槽组成。在木糖糖结合的封闭形式BxlE中,N和C结构域都移动到折叠配体,而任何一个结构域的构象都没有改变。木糖糖被埋在凹槽中,主要通过氢键相互作用被n结构域包裹,主要通过与Trp侧链的非极性相互作用被c结构域包裹。除了与木糖糖结合相匹配的凹形外,Asp-47和Lys-294之间的结构域间盐桥限制了配体结合位点的空间。这种结构域稳定的配体与BxlE结合的机制是其他溶质结合蛋白所没有的独特特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信