The quotient image: Class based recognition and synthesis under varying illumination conditions

Tammy Riklin-Raviv, A. Shashua
{"title":"The quotient image: Class based recognition and synthesis under varying illumination conditions","authors":"Tammy Riklin-Raviv, A. Shashua","doi":"10.1109/CVPR.1999.784968","DOIUrl":null,"url":null,"abstract":"The paper addresses the problem of \"class-based\" recognition and image-synthesis with varying illumination. The class-based synthesis and recognition tasks are defined as follows: given a single input image of an object, and a sample of images with varying illumination conditions of other objects of the same general class, capture the equivalence relationship (by generation of new images or by invariants) among all images of the object corresponding to new illumination conditions. The key result in our approach is based on a definition of an illumination invariant signature image, we call the \"quotient\" image, which enables an analytic generation of the image space with varying illumination from a single input image and a very small sample of other objects of the class-in our experiments as few as two objects. In many cases the recognition results outperform by far conventional methods and the image-synthesis is of remarkable quality considering the size of the database of example images and the mild pre-process required for making the algorithm work.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"1 1","pages":"566-571 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

Abstract

The paper addresses the problem of "class-based" recognition and image-synthesis with varying illumination. The class-based synthesis and recognition tasks are defined as follows: given a single input image of an object, and a sample of images with varying illumination conditions of other objects of the same general class, capture the equivalence relationship (by generation of new images or by invariants) among all images of the object corresponding to new illumination conditions. The key result in our approach is based on a definition of an illumination invariant signature image, we call the "quotient" image, which enables an analytic generation of the image space with varying illumination from a single input image and a very small sample of other objects of the class-in our experiments as few as two objects. In many cases the recognition results outperform by far conventional methods and the image-synthesis is of remarkable quality considering the size of the database of example images and the mild pre-process required for making the algorithm work.
商图像:不同光照条件下基于类的识别与合成
本文解决了“基于类别”的识别和不同光照下的图像合成问题。基于类的合成和识别任务定义如下:给定一个对象的单一输入图像,以及具有不同照明条件的同一一般类别的其他对象的图像样本,捕获与新照明条件相对应的该对象的所有图像之间的等价关系(通过生成新图像或通过不变量)。我们方法的关键结果是基于照明不变签名图像的定义,我们称之为“商”图像,它可以从单个输入图像和非常小的同类其他对象样本中分析生成具有不同照明的图像空间-在我们的实验中只有两个对象。在许多情况下,识别结果远远优于传统方法,并且考虑到示例图像数据库的大小和使算法工作所需的温和预处理,图像合成的质量非常高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信