Recent Research Trends of Flexible Piezoelectric Nanofibers for Energy Conversion Materials

S. Ji, J. Yun
{"title":"Recent Research Trends of Flexible Piezoelectric Nanofibers for Energy Conversion Materials","authors":"S. Ji, J. Yun","doi":"10.31613/CERAMIST.2019.22.2.02","DOIUrl":null,"url":null,"abstract":"s Wearable electronic devices with batteries must be lightweight, flexible and highly durable. Most importantly, the battery should be able to self-generate to operate the devices without having to be too frequently charged externally. An eco-friendly energy harvesting technology from various sources, such as solar energy, electromagnetic energy and wind energy, has been developed for a self-charging flexible battery. Although the energy harvesting from such sources are often unstable according to the surrounding environment, the energy harvesting from body movements and vibrations has been less affected by the surrounding environment. In this regard, flexible piezoelectric modules are the most attractive solution for this issue, because they convert mechanical energy to electrical energy and harvest energy from the human body motions. Among the various flexible piezoelectric modules, piezoelectric nanofibers have advantages when used as an energy harvester in wearable devices, due to their simple manufacturing process with good applicability to polymers and ceramics. This review focused on diverse flexible piezoelectric nanofibers and discusses their applications as various energy harvesting systems.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31613/CERAMIST.2019.22.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

s Wearable electronic devices with batteries must be lightweight, flexible and highly durable. Most importantly, the battery should be able to self-generate to operate the devices without having to be too frequently charged externally. An eco-friendly energy harvesting technology from various sources, such as solar energy, electromagnetic energy and wind energy, has been developed for a self-charging flexible battery. Although the energy harvesting from such sources are often unstable according to the surrounding environment, the energy harvesting from body movements and vibrations has been less affected by the surrounding environment. In this regard, flexible piezoelectric modules are the most attractive solution for this issue, because they convert mechanical energy to electrical energy and harvest energy from the human body motions. Among the various flexible piezoelectric modules, piezoelectric nanofibers have advantages when used as an energy harvester in wearable devices, due to their simple manufacturing process with good applicability to polymers and ceramics. This review focused on diverse flexible piezoelectric nanofibers and discusses their applications as various energy harvesting systems.
柔性压电纳米纤维能量转换材料的研究进展
带电池的可穿戴电子设备必须轻便、灵活、耐用。最重要的是,电池应该能够自我产生,以运行设备,而不必过于频繁地外部充电。利用太阳能、电磁能、风能等多种能源,开发出了可自行充电的柔性电池的生态友好型能量收集技术。虽然从这些能量来源收集的能量根据周围环境往往是不稳定的,但从身体运动和振动中收集的能量受周围环境的影响较小。在这方面,柔性压电模块是这个问题最有吸引力的解决方案,因为它们将机械能转换为电能,并从人体运动中收集能量。在各种柔性压电模块中,压电纳米纤维由于其制造工艺简单,对聚合物和陶瓷具有良好的适用性,在可穿戴设备中用作能量收集器具有优势。本文综述了各种柔性压电纳米纤维,并讨论了它们在各种能量收集系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信