Reuse of Brick Waste as a Cheap-Sorbent for the Removal of Nickel Ions from Aqueous Solutions

Q4 Chemical Engineering
T. H. Mhawesh, Z. T. A. ali
{"title":"Reuse of Brick Waste as a Cheap-Sorbent for the Removal of Nickel Ions from Aqueous Solutions","authors":"T. H. Mhawesh, Z. T. A. ali","doi":"10.31699/ijcpe.2020.2.3","DOIUrl":null,"url":null,"abstract":"The potential application of granules of brick waste (GBW) as a low-cost sorbent for removal of Ni+2ions from aqueous solutions has been studied. The properties of GBW were determined through several tests such as X-Ray diffraction (XRD), Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM), and BET surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of nickel (39.4%) were 1.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The adsorption data obtained by batch experiments subjected to the Three isotherm models called Langmuir, Freundlich and Elovich, The results showed that the Freundlich isotherm model described well the sorption data (R2=0.9176) in comparison with other models. The kinetic data were analyzed using two kinetic models called pseudo-first-order and pseudo-second-order. The pseudo-first-order kinetic model was found to agree well with the experimental data.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"11 1","pages":"15-23"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical and Petroleum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31699/ijcpe.2020.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 4

Abstract

The potential application of granules of brick waste (GBW) as a low-cost sorbent for removal of Ni+2ions from aqueous solutions has been studied. The properties of GBW were determined through several tests such as X-Ray diffraction (XRD), Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM), and BET surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of nickel (39.4%) were 1.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The adsorption data obtained by batch experiments subjected to the Three isotherm models called Langmuir, Freundlich and Elovich, The results showed that the Freundlich isotherm model described well the sorption data (R2=0.9176) in comparison with other models. The kinetic data were analyzed using two kinetic models called pseudo-first-order and pseudo-second-order. The pseudo-first-order kinetic model was found to agree well with the experimental data.
砖渣作为廉价吸附剂用于去除水溶液中镍离子的研究
研究了砖渣颗粒作为低成本吸附剂去除水中Ni+2离子的潜在应用。通过x射线衍射(XRD)、能量色散x射线(EDX)、扫描电子显微镜(SEM)和BET比表面积等测试确定了GBW的性能。在批量试验中,考察了接触时间、初始浓度、搅拌速度和GBW用量等操作参数的影响。各参数的最佳去除率分别为1.5 h、50 mg/L、250 rpm和1.8 g/100mL,去除率为39.4%。采用Langmuir、Freundlich和Elovich三种等温线模型对吸附数据进行了批量实验,结果表明Freundlich等温线模型较好地描述了吸附数据(R2=0.9176)。采用伪一阶和伪二阶动力学模型对动力学数据进行了分析。伪一级动力学模型与实验数据吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信