M. Milić, Todor Vacev, P. Petronijević, Ivan Nešović, Andrija Zorić, Stepa Paunović, Biljana Matejević Nikolić
{"title":"Experimental Research and FE Model of a Bolted Steel-CLT Composite Connection","authors":"M. Milić, Todor Vacev, P. Petronijević, Ivan Nešović, Andrija Zorić, Stepa Paunović, Biljana Matejević Nikolić","doi":"10.3311/ppci.22752","DOIUrl":null,"url":null,"abstract":"Steel-timber composite structures have numerous advantages compared to steel only and timber only structures. One of the most important parts of a composite structure is the composite connection. Object of this research was a steel-CLT composite connection consisting of a steel profile, a cross-laminated timber (CLT) panel and a bolt with nut and washer. Aim of the research was to develop an efficient finite element (FE) model of a bolted steel-CLT composite connection and to validate it experimentally. The research process consisted of several steps: experimental testing of the considered connection using asymmetrical push-out test, numerical modelling and analysis of the connection using Finite Element Method (FEM), validation of the numerical model using experimental results, and parametric study of the proposed numerical model. For numerical analysis, an innovative method for timber modelling has been proposed. The comparison between the experimental and numerical research results demonstrated that the proposed numerical model was convenient for practical application in structure analyses. The parametric study showed that, in some cases, atypical failure modes of the connection occurred. Based on registered behavior, a recommendation is given to calculate the load capacity of the connection integrally, taking into account both the primary (Johansen’s) and the secondary (rope effect) part of the connection strength, instead partially, as proposed by EN standards.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.22752","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Steel-timber composite structures have numerous advantages compared to steel only and timber only structures. One of the most important parts of a composite structure is the composite connection. Object of this research was a steel-CLT composite connection consisting of a steel profile, a cross-laminated timber (CLT) panel and a bolt with nut and washer. Aim of the research was to develop an efficient finite element (FE) model of a bolted steel-CLT composite connection and to validate it experimentally. The research process consisted of several steps: experimental testing of the considered connection using asymmetrical push-out test, numerical modelling and analysis of the connection using Finite Element Method (FEM), validation of the numerical model using experimental results, and parametric study of the proposed numerical model. For numerical analysis, an innovative method for timber modelling has been proposed. The comparison between the experimental and numerical research results demonstrated that the proposed numerical model was convenient for practical application in structure analyses. The parametric study showed that, in some cases, atypical failure modes of the connection occurred. Based on registered behavior, a recommendation is given to calculate the load capacity of the connection integrally, taking into account both the primary (Johansen’s) and the secondary (rope effect) part of the connection strength, instead partially, as proposed by EN standards.
期刊介绍:
Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly.
Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering.
The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.