Environment Prediction from Sparse Samples for Robotic Information Gathering

Jeffrey A. Caley, Geoffrey A. Hollinger
{"title":"Environment Prediction from Sparse Samples for Robotic Information Gathering","authors":"Jeffrey A. Caley, Geoffrey A. Hollinger","doi":"10.1109/ICRA40945.2020.9197263","DOIUrl":null,"url":null,"abstract":"Robots often require a model of their environment to make informed decisions. In unknown environments, the ability to infer the value of a data field from a limited number of samples is essential to many robotics applications. In this work, we propose a neural network architecture to model these spatially correlated data fields based on a limited number of spatially continuous samples. Additionally, we provide a method based on biased loss functions to suggest future areas of exploration to minimize reconstruction error. We run simulated robotic information gathering trials on both the MNIST hand written digits dataset and a Regional Ocean Modeling System (ROMS) ocean dataset for ocean monitoring. Our method outperforms Gaussian process regression in both environments for modeling the data field and action selection.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"5 1","pages":"10577-10583"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Robots often require a model of their environment to make informed decisions. In unknown environments, the ability to infer the value of a data field from a limited number of samples is essential to many robotics applications. In this work, we propose a neural network architecture to model these spatially correlated data fields based on a limited number of spatially continuous samples. Additionally, we provide a method based on biased loss functions to suggest future areas of exploration to minimize reconstruction error. We run simulated robotic information gathering trials on both the MNIST hand written digits dataset and a Regional Ocean Modeling System (ROMS) ocean dataset for ocean monitoring. Our method outperforms Gaussian process regression in both environments for modeling the data field and action selection.
基于稀疏样本的机器人信息采集环境预测
机器人通常需要一个环境模型来做出明智的决定。在未知环境中,从有限数量的样本中推断数据字段值的能力对许多机器人应用程序至关重要。在这项工作中,我们提出了一个基于有限数量的空间连续样本的神经网络架构来建模这些空间相关的数据场。此外,我们提供了一种基于偏差损失函数的方法来建议未来的勘探区域,以最大限度地减少重建误差。我们在MNIST手写数字数据集和区域海洋建模系统(ROMS)海洋数据集上进行了模拟机器人信息收集试验,用于海洋监测。我们的方法在数据域建模和动作选择两种环境中都优于高斯过程回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信