P. Mozolyako, G. Psaromiligkos, A. Volberg, Pavel Zorin Kranich
{"title":"Combinatorial property of all positive measures in dimensions $2$ and $3$","authors":"P. Mozolyako, G. Psaromiligkos, A. Volberg, Pavel Zorin Kranich","doi":"10.5802/CRMATH.90","DOIUrl":null,"url":null,"abstract":"We prove multi-parameter dyadic embedding theorem for Hardy operator on the multi-tree. We also show that for a large class of Dirichlet spaces of holomorphic functions in bi-disc and tri-disc this proves the embedding theorem of those spaces on biand tri-disc. We completely describe the Carleson measures for such embeddings. Funding. We acknowledge the support of the following grants: NSF grant DMS-1900286, Theorem 2 was obtained in the frameworks of the Russian Science Foundation grant 17-11-01064-P, the third author was supported also by Alexander von Humboldt foundation. Manuscript received 10th February 2020, revised 25th June 2020, accepted 26th June 2020. Version française abrégée Un n -arbre T n , n ≥ 1, est un produit cartésien de n arbres dyadiques identiques avec un ordre partiel induit par la structure du produit. Etant donné un point β ∈ T n , nous définissons son successeur en posant S (β) = {α ∈ T n : α≤ β}. Soient w,μ deux fonctions positives sur T n , nous définissons la constante de boîte comme le plus petit nombre [w,μ]Box tel que ES (β)[μ] := ∑ α≤β w(α)(I∗μ(α))2 ≤ [w,μ]Boxμ(S (β)), ∀β ∈ T n . (1) La constante de plongement de Carleson est la plus petite constante [w,μ]C E telle que l’inégalité suivante ait lieu: E [ψμ] ≤ [w,μ]C E ∑ ω∈T n |ψ(ω)|2μ(ω) (4) Le résultat principal de cet article est le théorème suivant: ∗Corresponding author. ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/ 722 Pavel Mozolyako, Georgios Psaromiligkos, Alexander Volberg and Pavel Zorin Kranich Theorem 1. Soit μ : T n → R+, n = 1,2,3 et soit w : T n → [0,∞) un poids d’une forme tensorielle. Alors l’inégalité suivante a lieu [w,μ]C E . [w,μ]Box . 1. Hardy inequality on the n-tree and energy of measures A (finite) tree T is a finite partially ordered set such that for every ω ∈ T the set {α ∈ T : α ≥ ω} is totally ordered (here we identify the tree with its vertex set). In what follows we consider rooted dyadic trees, i.e. there is a unique maximal element in T , and every element (except for the minimal ones) has exactly two children. An n-tree T n , n ≥ 1 is a Cartesian product of n identical dyadic trees with order induced by the product structure. In what follows no estimate will depend on the depth of the tree. A subset U (resp. D) of a partially ordered set T n is called an up-set (resp. down-set) if, for every α ∈U and β ∈ T with α≤β (resp. β≤α), we also have β ∈U (resp. β ∈D). Given a point β ∈ T n we define its successor set S (β) = {α ∈ T n : α≤β}, clearly it is a down-set. From now on we assume that the weight w : T n → R+ is fixed. The Hardy operator associated with w is defined by Iwφ(γ) := ∑ γ′≥γ w(γ′)φ(γ′) and I∗ψ(γ) = ∑ γ′≤γ ψ(γ′). For a measure (non-negative function) μ on T n we define the (w-) potential to be Vμw (α) := (Iw I∗μ)(α), α ∈ T n , again we usually drop the index w . Let E ⊂ T n andμ be a measure on T n . The E-truncated energy of μ is EE [μ] := ∑ α∈E (I∗μ)2(α)w(α). If E = T n , we write E [μ] instead, and so E [μ] = ∫ T n Vdμ := ∑ α∈T n V(α)μ(α). If E is a δ-level set of V for some δ> 0, i.e. E = {α : V ≤ δ}, then we write Eδ[μ] := EE [μ]. We define the box constant to be the smallest number [w,μ]Box such that ES (β)[μ] := ∑ α≤β w(α)(I∗μ(α))2 ≤ [w,μ]Boxμ(S (β)), ∀β ∈ T n . (1) The Carleson constant is the smallest number [w,μ]C such that ED [μ] ≤ [w,μ]Cμ(D), ∀D ⊂ T n down-set. (2) The hereditary Carleson constant (or restricted energy condition constant, or REC constant) is the smallest constant [w,μ]HC such that E [μ1E ] ≤ [w,μ]HCμ(E), ∀ E ⊂ T n . (3) Finally the Carleson embedding constant is the smallest constant [w,μ]C E such that the adjoint embedding E [ψμ] ≤ [w,μ]C E ∑ ω∈T n |ψ(ω)|2μ(ω) (4) holds for all functions ψ on T n . If [w,μ]C E < +∞, we call (w,μ) the trace pair for the weighted Hardy inequality on T n . For positive numbers A,B , we write A . B if A ≤ C B with an absolute constant C , that in particular does not depend on the pair (w,μ). The inequalities [w,μ]Box ≤ [w,μ]C ≤ [w,μ]HC ≤ [w,μ]C E are obvious. The converse inequalities for 1-trees were proved in [6]. Our main result is the extension to the 2and 3-trees. The reader can see details in preprints [3], [4] and partially in [1] for 2-tree. C. R. Mathématique, 2020, 358, n 6, 721-725 Pavel Mozolyako, Georgios Psaromiligkos, Alexander Volberg and Pavel Zorin Kranich 723 Theorem 1. Let μ : T n → R+, n = 1,2,3. Let w : T n → [0,∞) be of tensor product form. Then the reverses of the above inequalities also hold: [w,μ]C E . [w,μ]HC . [w,μ]C . [w,μ]Box . The key element in the proof of all these inequalities is the so-called surrogate Maximum Principle. To elaborate let us consider the one-parameter case. Then V μ δ (α) ≤ δ for any α ∈ T , so, in particular, for any measure ρ on T one has trivially ∫ T V μ δ dρ ≤ δ|ρ|, where |ρ| = ρ(T ) is the total mass of ρ. In higher dimensions the situation is different, i.e. V δ can blow up at some points, however one can still measure the size of the blow-up set in potentialtheoretic terms. We conjecture that the following holds for all n. Theorem 2. For n = 1,2,3 and a measure ρ on T n one has ∫ T n V δ dρ. ( δ|ρ|) 2 n+1 (Eδ[μ]E [ρ]) n−1 n+1 . 2. Applications to holomorphic Sobolev spaces on the polydisc The Hardy inequality can be interpreted with regards to its connections to certain problems in the theory of Hilbert spaces of analytic functions on the poly-disc. These connections actually motivated the study of the Hardy operator in [2], [5] and [7]. We start with some additional notation. Given an integer n ≥ 1 and s = (s1, . . . , sn) ∈ Rn we consider a Hilbert space H s (Dn) of analytic functions on the poly-disc Dn with the norm ‖ f ‖H s (Dn ) := ∑ k1,...,kn≥0 | f̂ (k1, . . . ,kn)|(k1 +1)s1 · · · · · (kn +1)sn , where f (z) = ∑k1,...,kn≥0 f̂ (k1, . . . ,kn)z1 1 · · · · · zn n , z = (z1, . . . , zn) ∈ Dn . Observe, that, clearly H s (Dn) = ⊗nj=1 H s j (D). In particular, the choice s = (0, . . . ,0) gives a classical Hardy space on the poly-disc, on the other hand s = (1, . . . ,1) corresponds to the Dirichlet space. Definition 3. A measure ν on Dn is called a Carleson measure for H s , if there exists a constant C such that ∫ Dn | f (z)|2 dν(z) ≤C‖ f ‖H s (Dn ), (5) or, in other words, the embedding I d : H s (Dn) → L2(Dn ,dν) is bounded. The smallest constant C such that (5) holds is denoted by [ν]s . Trace pairs for the weighted Hardy inequality on n-tree and Carleson measures for H s are closely related. Below we give a brief overview of this relationship. We start by assuming that s ∈ (0,1]n (so that H s (Dn) is a weighted Dirichlet space on the poly-disc), and that suppν⊂ rDd for some r < 1 (the latter is just a convenience assumption). It is well known that H s j (D), 1 ≤ j ≤ n, is a reproducing kernel Hilbert space (RKHS) with kernel Ks j satisfying (possibly after a suitable change of norm) |Ks j |(z j ,ζ j ) ≈ |1− zζ̄|1−s j , 0 < s j < 1, |Ks j |(z j ,ζ j ) ≈ log |1− zζ̄|−1, s j = 1. It follows immediately that H s (Dn) is RKHS as well, and Ks (z,ζ) = n ∏ j=1 Ks j (z j ,ζ j ), z,ζ ∈Dn . Going back to the Carleson embedding we see that Id : H s (Dn) → L2(Dn ,dν) is bounded if and only if its adjointΘ is bounded as well. Let us compute its action on a function g ∈ L2(Dn ,dν) (Θg )(z) = 〈Θg ,Ks (z, · )〉H s (Dn ) = 〈g ,Ks (z, · )〉L2(Dn ,dν) = ∫ Dn g (ζ)Ks (z,ζ)dν(ζ). C. R. Mathématique, 2020, 358, n 6, 721-725 724 Pavel Mozolyako, Georgios Psaromiligkos, Alexander Volberg and Pavel Zorin Kranich Hence, forΘ to be bounded it must satisfy ‖g‖L2(Dn ,dν) & ‖Θg‖H s (Dn ) = 〈g ,Θg 〉L2(Dn ,dν) = ∫ D2n g (z)g (ζ)Ks (z,ζ)dν(z)dν(ζ). (6) Observe now that if 1−s j , j = 1, . . . ,n is small enough, we can replace the reproducing kernel with its real part. Lemma 4. For any n ≥ 1 there exists a number εn > 0 such that if sup1≤ j≤n(1− s j ) ≤ εn , then |Ks (z,ζ)| ≤C (n)RKs (z,ζ). (7) In this case that (6) is equivalent to","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We prove multi-parameter dyadic embedding theorem for Hardy operator on the multi-tree. We also show that for a large class of Dirichlet spaces of holomorphic functions in bi-disc and tri-disc this proves the embedding theorem of those spaces on biand tri-disc. We completely describe the Carleson measures for such embeddings. Funding. We acknowledge the support of the following grants: NSF grant DMS-1900286, Theorem 2 was obtained in the frameworks of the Russian Science Foundation grant 17-11-01064-P, the third author was supported also by Alexander von Humboldt foundation. Manuscript received 10th February 2020, revised 25th June 2020, accepted 26th June 2020. Version française abrégée Un n -arbre T n , n ≥ 1, est un produit cartésien de n arbres dyadiques identiques avec un ordre partiel induit par la structure du produit. Etant donné un point β ∈ T n , nous définissons son successeur en posant S (β) = {α ∈ T n : α≤ β}. Soient w,μ deux fonctions positives sur T n , nous définissons la constante de boîte comme le plus petit nombre [w,μ]Box tel que ES (β)[μ] := ∑ α≤β w(α)(I∗μ(α))2 ≤ [w,μ]Boxμ(S (β)), ∀β ∈ T n . (1) La constante de plongement de Carleson est la plus petite constante [w,μ]C E telle que l’inégalité suivante ait lieu: E [ψμ] ≤ [w,μ]C E ∑ ω∈T n |ψ(ω)|2μ(ω) (4) Le résultat principal de cet article est le théorème suivant: ∗Corresponding author. ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/ 722 Pavel Mozolyako, Georgios Psaromiligkos, Alexander Volberg and Pavel Zorin Kranich Theorem 1. Soit μ : T n → R+, n = 1,2,3 et soit w : T n → [0,∞) un poids d’une forme tensorielle. Alors l’inégalité suivante a lieu [w,μ]C E . [w,μ]Box . 1. Hardy inequality on the n-tree and energy of measures A (finite) tree T is a finite partially ordered set such that for every ω ∈ T the set {α ∈ T : α ≥ ω} is totally ordered (here we identify the tree with its vertex set). In what follows we consider rooted dyadic trees, i.e. there is a unique maximal element in T , and every element (except for the minimal ones) has exactly two children. An n-tree T n , n ≥ 1 is a Cartesian product of n identical dyadic trees with order induced by the product structure. In what follows no estimate will depend on the depth of the tree. A subset U (resp. D) of a partially ordered set T n is called an up-set (resp. down-set) if, for every α ∈U and β ∈ T with α≤β (resp. β≤α), we also have β ∈U (resp. β ∈D). Given a point β ∈ T n we define its successor set S (β) = {α ∈ T n : α≤β}, clearly it is a down-set. From now on we assume that the weight w : T n → R+ is fixed. The Hardy operator associated with w is defined by Iwφ(γ) := ∑ γ′≥γ w(γ′)φ(γ′) and I∗ψ(γ) = ∑ γ′≤γ ψ(γ′). For a measure (non-negative function) μ on T n we define the (w-) potential to be Vμw (α) := (Iw I∗μ)(α), α ∈ T n , again we usually drop the index w . Let E ⊂ T n andμ be a measure on T n . The E-truncated energy of μ is EE [μ] := ∑ α∈E (I∗μ)2(α)w(α). If E = T n , we write E [μ] instead, and so E [μ] = ∫ T n Vdμ := ∑ α∈T n V(α)μ(α). If E is a δ-level set of V for some δ> 0, i.e. E = {α : V ≤ δ}, then we write Eδ[μ] := EE [μ]. We define the box constant to be the smallest number [w,μ]Box such that ES (β)[μ] := ∑ α≤β w(α)(I∗μ(α))2 ≤ [w,μ]Boxμ(S (β)), ∀β ∈ T n . (1) The Carleson constant is the smallest number [w,μ]C such that ED [μ] ≤ [w,μ]Cμ(D), ∀D ⊂ T n down-set. (2) The hereditary Carleson constant (or restricted energy condition constant, or REC constant) is the smallest constant [w,μ]HC such that E [μ1E ] ≤ [w,μ]HCμ(E), ∀ E ⊂ T n . (3) Finally the Carleson embedding constant is the smallest constant [w,μ]C E such that the adjoint embedding E [ψμ] ≤ [w,μ]C E ∑ ω∈T n |ψ(ω)|2μ(ω) (4) holds for all functions ψ on T n . If [w,μ]C E < +∞, we call (w,μ) the trace pair for the weighted Hardy inequality on T n . For positive numbers A,B , we write A . B if A ≤ C B with an absolute constant C , that in particular does not depend on the pair (w,μ). The inequalities [w,μ]Box ≤ [w,μ]C ≤ [w,μ]HC ≤ [w,μ]C E are obvious. The converse inequalities for 1-trees were proved in [6]. Our main result is the extension to the 2and 3-trees. The reader can see details in preprints [3], [4] and partially in [1] for 2-tree. C. R. Mathématique, 2020, 358, n 6, 721-725 Pavel Mozolyako, Georgios Psaromiligkos, Alexander Volberg and Pavel Zorin Kranich 723 Theorem 1. Let μ : T n → R+, n = 1,2,3. Let w : T n → [0,∞) be of tensor product form. Then the reverses of the above inequalities also hold: [w,μ]C E . [w,μ]HC . [w,μ]C . [w,μ]Box . The key element in the proof of all these inequalities is the so-called surrogate Maximum Principle. To elaborate let us consider the one-parameter case. Then V μ δ (α) ≤ δ for any α ∈ T , so, in particular, for any measure ρ on T one has trivially ∫ T V μ δ dρ ≤ δ|ρ|, where |ρ| = ρ(T ) is the total mass of ρ. In higher dimensions the situation is different, i.e. V δ can blow up at some points, however one can still measure the size of the blow-up set in potentialtheoretic terms. We conjecture that the following holds for all n. Theorem 2. For n = 1,2,3 and a measure ρ on T n one has ∫ T n V δ dρ. ( δ|ρ|) 2 n+1 (Eδ[μ]E [ρ]) n−1 n+1 . 2. Applications to holomorphic Sobolev spaces on the polydisc The Hardy inequality can be interpreted with regards to its connections to certain problems in the theory of Hilbert spaces of analytic functions on the poly-disc. These connections actually motivated the study of the Hardy operator in [2], [5] and [7]. We start with some additional notation. Given an integer n ≥ 1 and s = (s1, . . . , sn) ∈ Rn we consider a Hilbert space H s (Dn) of analytic functions on the poly-disc Dn with the norm ‖ f ‖H s (Dn ) := ∑ k1,...,kn≥0 | f̂ (k1, . . . ,kn)|(k1 +1)s1 · · · · · (kn +1)sn , where f (z) = ∑k1,...,kn≥0 f̂ (k1, . . . ,kn)z1 1 · · · · · zn n , z = (z1, . . . , zn) ∈ Dn . Observe, that, clearly H s (Dn) = ⊗nj=1 H s j (D). In particular, the choice s = (0, . . . ,0) gives a classical Hardy space on the poly-disc, on the other hand s = (1, . . . ,1) corresponds to the Dirichlet space. Definition 3. A measure ν on Dn is called a Carleson measure for H s , if there exists a constant C such that ∫ Dn | f (z)|2 dν(z) ≤C‖ f ‖H s (Dn ), (5) or, in other words, the embedding I d : H s (Dn) → L2(Dn ,dν) is bounded. The smallest constant C such that (5) holds is denoted by [ν]s . Trace pairs for the weighted Hardy inequality on n-tree and Carleson measures for H s are closely related. Below we give a brief overview of this relationship. We start by assuming that s ∈ (0,1]n (so that H s (Dn) is a weighted Dirichlet space on the poly-disc), and that suppν⊂ rDd for some r < 1 (the latter is just a convenience assumption). It is well known that H s j (D), 1 ≤ j ≤ n, is a reproducing kernel Hilbert space (RKHS) with kernel Ks j satisfying (possibly after a suitable change of norm) |Ks j |(z j ,ζ j ) ≈ |1− zζ̄|1−s j , 0 < s j < 1, |Ks j |(z j ,ζ j ) ≈ log |1− zζ̄|−1, s j = 1. It follows immediately that H s (Dn) is RKHS as well, and Ks (z,ζ) = n ∏ j=1 Ks j (z j ,ζ j ), z,ζ ∈Dn . Going back to the Carleson embedding we see that Id : H s (Dn) → L2(Dn ,dν) is bounded if and only if its adjointΘ is bounded as well. Let us compute its action on a function g ∈ L2(Dn ,dν) (Θg )(z) = 〈Θg ,Ks (z, · )〉H s (Dn ) = 〈g ,Ks (z, · )〉L2(Dn ,dν) = ∫ Dn g (ζ)Ks (z,ζ)dν(ζ). C. R. Mathématique, 2020, 358, n 6, 721-725 724 Pavel Mozolyako, Georgios Psaromiligkos, Alexander Volberg and Pavel Zorin Kranich Hence, forΘ to be bounded it must satisfy ‖g‖L2(Dn ,dν) & ‖Θg‖H s (Dn ) = 〈g ,Θg 〉L2(Dn ,dν) = ∫ D2n g (z)g (ζ)Ks (z,ζ)dν(z)dν(ζ). (6) Observe now that if 1−s j , j = 1, . . . ,n is small enough, we can replace the reproducing kernel with its real part. Lemma 4. For any n ≥ 1 there exists a number εn > 0 such that if sup1≤ j≤n(1− s j ) ≤ εn , then |Ks (z,ζ)| ≤C (n)RKs (z,ζ). (7) In this case that (6) is equivalent to
证明了多树上Hardy算子的多参数并矢嵌入定理。对于双盘和三盘上的一类全纯函数的Dirichlet空间,证明了这些空间在双盘和三盘上的嵌入定理。我们完整地描述了这种嵌入的Carleson测度。资金。我们感谢以下基金的支持:NSF基金DMS-1900286,定理2是在俄罗斯科学基金会基金17-11-01064-P的框架下获得的,第三作者也得到了Alexander von Humboldt基金会的支持。稿收到2020年2月10日,修改2020年6月25日,接受2020年6月26日。法语版本abregee联合国n -arbre T n, n≥1,是联合国产品cartesien de n arbres dyadiques identiques用范围partiel代购契约par杜拉结构产品。当点β∈t_n时,n (β) = {α∈t_n: α≤β}。∑α≤β w(α)(I∗μ(α))2≤[w,μ]∑β μ(S (β)),∑β∈tn,∀β∈tn。(1) La constant de plongement de Carleson est La + petite constant [w,μ]C E telle que l ' in: E [ψμ]≤[w,μ]C E∑ω∈T n |ψ(ω)|2μ(ω) (4) Le rsultat principal de cet article est Le th:∗通讯作者。Pavel Mozolyako, Georgios Psaromiligkos, Alexander Volberg和Pavel Zorin Kranich定理。Soit μ: t_n→R+, n = 1,2,3; Soit μ: t_n→[0,∞)unpoids d 'une forme tensororielle。[j]李晓明。基于遗传算法的生物信息学研究[j]。(w,μ)盒子。1. n树上的Hardy不等式和A(有限)树T的测度能是一个有限偏序集合,使得对于每一个ω∈T,集合{α∈T: α≥ω}是全序的(这里我们用它的顶点集来识别树)。在接下来的内容中,我们考虑有根并矢树,即在T中有一个唯一的最大元素,并且每个元素(除了最小元素)都有两个子元素。n树tn, n≥1是n棵相同并矢树的笛卡尔积,并由积结构引起序。在接下来的内容中,任何估计都不取决于树的深度。子集U (p。偏序集合T n的D)称为逆集(逆集)。对于α∈U, β∈T,且α≤β (resp;β≤α),我们也有β∈U (resp。β∈D)。给定一个点β∈tn,我们定义它的后继集S (β) = {α∈tn: α≤β},显然它是一个下集。从现在开始,我们假设权w: tn→R+是固定的。定义的哈代运营商与w是信息战φ(γ):=∑γ’≥γw(γ)φ(γ)我∗ψ(γ)=∑γ’≤γψ(γ)。对于T n上的测度(非负函数)μ,我们定义(w-)势为Vμw (α):= (Iw I∗μ)(α), α∈T n,我们通常省略指标w。设E∧t_n, μ是t_n上的测度。μ的E-truncated能量EE(μ):=∑α∈E(我∗μ)2(α)w(α)。如果T E = n,我们写E(μ)相反,所以E(μ)=∫T n Vdμ:=∑α∈T n V(α)μ(α)。如果E是V在δ> 0时的δ水平集,即E = {α: V≤δ},则我们写Eδ[μ]:= EE [μ]。我们定义框常数最小的数量(w,μ)箱,ES(β)(μ):=∑α≤βw(α)(我∗μ(α))2≤(w,μ)盒子μ(S(β)),∀β∈T n。(1) Carleson常数是使ED [μ]≤[w,μ]Cμ(D),∀D∧n的最小数[w,μ]C。(2)遗传的卡里森常数(或限制能条件常数,或REC常数)是最小的常数[w,μ]HC,使得E [μ 1e]≤[w,μ]HCμ(E),∀E∧n。(3)最后Carleson嵌入常数是最小的常数[w,μ]C E,使得伴随嵌入E [ψμ]≤[w,μ]C E∑ω∈T n |ψ(ω)|2μ(ω)(4)对所有函数ψ在T n上成立。当[w,μ]C E < +∞时,我们称(w,μ)为T n上加权Hardy不等式的迹对。对于正数A,B,我们写A。如果A≤C, B具有绝对常数C,则特别不依赖于(w,μ)对。不等式[w,μ]Box≤[w,μ]C≤[w,μ]HC≤[w,μ]C E是明显的。[6]证明了1-树的逆不等式。我们的主要结果是2树和3树的扩展。读者可以在预印本[3]、[4]和[1]中看到2-tree的部分细节。张建军,张建军,张建军,等。723定理[j] .数学学报,2016,35(1):349 - 349。设μ: T n→R+, n = 1,2,3。设w: T n→[0,∞)为张量积形式。则上述不等式的反转也成立:[w,μ]C E。(w,μ)HC。(w,μ)C。(w,μ)盒子。证明所有这些不等式的关键要素是所谓的替代极大原理。为了详细说明,让我们考虑单参数的情况。那么对于任意α∈T, V μ δ (α)≤δ,因此,特别地,对于任意度量ρ在T上,我们有平凡的∫T V μ δ ρ≤δ|ρ|,其中|ρ| = ρ(T)是ρ的总质量。在更高的维度,情况是不同的,即。