{"title":"Generation of Synchronizing State Machines from a Transition System: A Region–Based Approach","authors":"Viktor Teren, J. Cortadella, T. Villa","doi":"10.34768/amcs-2023-0011","DOIUrl":null,"url":null,"abstract":"Abstract Transition systems (TSs) and Petri nets (PNs) are important models of computation ubiquitous in formal methods for modeling systems. A crucial problem is how to extract, from a given TS, a PN whose reachability graph is equivalent (with a suitable notion of equivalence) to the original TS. This paper addresses the decomposition of transition systems into synchronizing state machines (SMs), which are a class of Petri nets where each transition has one incoming and one outgoing arc. Furthermore, all reachable markings (non-negative vectors representing the number of tokens for each place) of an SM have only one marked place with only one token. This is a significant case of the general problem of extracting a PN from a TS. The decomposition is based on the theory of regions, and it is shown that a property of regions called excitation-closure is a sufficient condition to guarantee the equivalence between the original TS and a decomposition into SMs. An efficient algorithm is provided which solves the problem by reducing its critical steps to the maximal independent set problem (to compute a minimal set of irredundant SMs) or to satisfiability (to merge the SMs). We report experimental results that show a good trade-off between quality of results vs. computation time.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"51 1","pages":"133 - 149"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2023-0011","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Transition systems (TSs) and Petri nets (PNs) are important models of computation ubiquitous in formal methods for modeling systems. A crucial problem is how to extract, from a given TS, a PN whose reachability graph is equivalent (with a suitable notion of equivalence) to the original TS. This paper addresses the decomposition of transition systems into synchronizing state machines (SMs), which are a class of Petri nets where each transition has one incoming and one outgoing arc. Furthermore, all reachable markings (non-negative vectors representing the number of tokens for each place) of an SM have only one marked place with only one token. This is a significant case of the general problem of extracting a PN from a TS. The decomposition is based on the theory of regions, and it is shown that a property of regions called excitation-closure is a sufficient condition to guarantee the equivalence between the original TS and a decomposition into SMs. An efficient algorithm is provided which solves the problem by reducing its critical steps to the maximal independent set problem (to compute a minimal set of irredundant SMs) or to satisfiability (to merge the SMs). We report experimental results that show a good trade-off between quality of results vs. computation time.
期刊介绍:
The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences.
The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas:
-modern control theory and practice-
artificial intelligence methods and their applications-
applied mathematics and mathematical optimisation techniques-
mathematical methods in engineering, computer science, and biology.