J. Courtney, Gary R. Foley, Johannes L. van Burgel, B. Trewin, Andrew D. Burton, J. Callaghan, N. Davidson
{"title":"Revisions to the Australian tropical cyclone best track database","authors":"J. Courtney, Gary R. Foley, Johannes L. van Burgel, B. Trewin, Andrew D. Burton, J. Callaghan, N. Davidson","doi":"10.1071/es21011","DOIUrl":null,"url":null,"abstract":"\nThe Australian tropical cyclone (TC) best track database (BT) maintained by the Bureau of Meteorology has records since 1909 of varying quality and completeness. Since 2005 a series of efforts to improve the database have included: removing internal inconsistencies, adding fixes, and identifying errors using comparisons with other datasets; upgrading intensity information since 1973 including adding maximum winds (Vm) prior to 1984–85, rederiving Dvorak Current Intensity numbers from archived material and accounting for different wind–pressure relationships used; a partial reanalysis of satellite imagery including microwave imagery using the HURSAT dataset since 1987; and considering an objective intensity dataset. The BT homogeneity is reviewed in the context of improvements in satellite technology, observational coverage, scientific developments, BT procedures and the subjective variation between analysts across time and offices. The scale of these variances is greatest in the early stages prior to 1981 in the absence of geostationary satellite imagery until 1978, satellite calibration issues from 1978–80 and prior to the introduction of the enhanced infra-red Dvorak technique in 1981. The current era since 2003 is considered to be the most accurate, comprehensive and homogeneous corresponding to the expansion of the TC database to include the current suite of fields; the application of microwave and scatterometry imagery; greater standardisation of BT practices and slight changes in the application of the Dvorak technique. These improvements have generated a more consistent dataset that could be used for weather and climate research and other TC-related work.\n","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"6 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Southern Hemisphere Earth Systems Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1071/es21011","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 4
Abstract
The Australian tropical cyclone (TC) best track database (BT) maintained by the Bureau of Meteorology has records since 1909 of varying quality and completeness. Since 2005 a series of efforts to improve the database have included: removing internal inconsistencies, adding fixes, and identifying errors using comparisons with other datasets; upgrading intensity information since 1973 including adding maximum winds (Vm) prior to 1984–85, rederiving Dvorak Current Intensity numbers from archived material and accounting for different wind–pressure relationships used; a partial reanalysis of satellite imagery including microwave imagery using the HURSAT dataset since 1987; and considering an objective intensity dataset. The BT homogeneity is reviewed in the context of improvements in satellite technology, observational coverage, scientific developments, BT procedures and the subjective variation between analysts across time and offices. The scale of these variances is greatest in the early stages prior to 1981 in the absence of geostationary satellite imagery until 1978, satellite calibration issues from 1978–80 and prior to the introduction of the enhanced infra-red Dvorak technique in 1981. The current era since 2003 is considered to be the most accurate, comprehensive and homogeneous corresponding to the expansion of the TC database to include the current suite of fields; the application of microwave and scatterometry imagery; greater standardisation of BT practices and slight changes in the application of the Dvorak technique. These improvements have generated a more consistent dataset that could be used for weather and climate research and other TC-related work.
期刊介绍:
The Journal of Southern Hemisphere Earth Systems Science (JSHESS) publishes broad areas of research with a distinct emphasis on the Southern Hemisphere. The scope of the Journal encompasses the study of the mean state, variability and change of the atmosphere, oceans, and land surface, including the cryosphere, from hemispheric to regional scales.
general circulation of the atmosphere and oceans,
climate change and variability ,
climate impacts,
climate modelling ,
past change in the climate system including palaeoclimate variability,
atmospheric dynamics,
synoptic meteorology,
mesoscale meteorology and severe weather,
tropical meteorology,
observation systems,
remote sensing of atmospheric, oceanic and land surface processes,
weather, climate and ocean prediction,
atmospheric and oceanic composition and chemistry,
physical oceanography,
air‐sea interactions,
coastal zone processes,
hydrology,
cryosphere‐atmosphere interactions,
land surface‐atmosphere interactions,
space weather, including impacts and mitigation on technology,
ionospheric, magnetospheric, auroral and space physics,
data assimilation applied to the above subject areas .
Authors are encouraged to contact the Editor for specific advice on whether the subject matter of a proposed submission is appropriate for the Journal of Southern Hemisphere Earth Systems Science.