{"title":"WEIGHTED SPACES OF FUNCTIONS HARMONIC IN THE UNIT BALL","authors":"A. Petrosyan, K. Avetisyan","doi":"10.46991/pysu:a/2017.51.1.003","DOIUrl":null,"url":null,"abstract":"We introduce the Banach spaces $h_{\\infty}(\\varphi)$, $h_{0}(\\varphi)$ and $h^{1}(\\psi)$ functions harmonic in the unit ball $B\\subset\\mathbb{R}^n$. These spaces depend on weight functions $\\varphi$, $\\psi$. We prove that if $\\varphi$ and $\\psi$ form a normal pair, then $h^{1}(\\psi)^*\\sim h_{\\infty}(\\varphi)$ and $h_{0}(\\varphi)^*\\sim h^{1}(\\psi)$.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2017.51.1.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce the Banach spaces $h_{\infty}(\varphi)$, $h_{0}(\varphi)$ and $h^{1}(\psi)$ functions harmonic in the unit ball $B\subset\mathbb{R}^n$. These spaces depend on weight functions $\varphi$, $\psi$. We prove that if $\varphi$ and $\psi$ form a normal pair, then $h^{1}(\psi)^*\sim h_{\infty}(\varphi)$ and $h_{0}(\varphi)^*\sim h^{1}(\psi)$.