WEIGHTED SPACES OF FUNCTIONS HARMONIC IN THE UNIT BALL

A. Petrosyan, K. Avetisyan
{"title":"WEIGHTED SPACES OF FUNCTIONS HARMONIC IN THE UNIT BALL","authors":"A. Petrosyan, K. Avetisyan","doi":"10.46991/pysu:a/2017.51.1.003","DOIUrl":null,"url":null,"abstract":"We introduce the Banach spaces $h_{\\infty}(\\varphi)$, $h_{0}(\\varphi)$ and $h^{1}(\\psi)$ functions harmonic in the unit ball $B\\subset\\mathbb{R}^n$. These spaces depend on weight functions $\\varphi$, $\\psi$. We prove that if $\\varphi$ and $\\psi$ form a normal pair, then $h^{1}(\\psi)^*\\sim h_{\\infty}(\\varphi)$ and $h_{0}(\\varphi)^*\\sim h^{1}(\\psi)$.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2017.51.1.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the Banach spaces $h_{\infty}(\varphi)$, $h_{0}(\varphi)$ and $h^{1}(\psi)$ functions harmonic in the unit ball $B\subset\mathbb{R}^n$. These spaces depend on weight functions $\varphi$, $\psi$. We prove that if $\varphi$ and $\psi$ form a normal pair, then $h^{1}(\psi)^*\sim h_{\infty}(\varphi)$ and $h_{0}(\varphi)^*\sim h^{1}(\psi)$.
单位球中调和函数的加权空间
引入了单位球$B\subset\mathbb{R}^n$中调和的巴拿赫空间$h_{\infty}(\varphi)$、$h_{0}(\varphi)$和$h^{1}(\psi)$函数。这些空间依赖于权重函数$\varphi$, $\psi$。我们证明了如果$\varphi$和$\psi$构成一个正常的对,那么$h^{1}(\psi)^*\sim h_{\infty}(\varphi)$和$h_{0}(\varphi)^*\sim h^{1}(\psi)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信