Robust Jointly-Sparse Signal Recovery Based on Minimax Concave Loss Function

Kyohei Suzuki, M. Yukawa
{"title":"Robust Jointly-Sparse Signal Recovery Based on Minimax Concave Loss Function","authors":"Kyohei Suzuki, M. Yukawa","doi":"10.23919/Eusipco47968.2020.9287635","DOIUrl":null,"url":null,"abstract":"We propose a robust approach to recovering the jointly-sparse signals in the presence of outliers. We formulate the recovering task as a minimization problem involving three terms: (i) the minimax concave (MC) loss function, (ii) the MC penalty function, and (iii) the squared Frobenius norm. The MC-based loss and penalty functions enhance robustness and group sparsity, respectively, while the squared Frobenius norm induces the convexity. The problem is solved, via reformulation, by the primal-dual splitting method, for which the convergence condition is derived. Numerical examples show that the proposed approach enjoys remarkable outlier robustness.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"109 1","pages":"2070-2074"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a robust approach to recovering the jointly-sparse signals in the presence of outliers. We formulate the recovering task as a minimization problem involving three terms: (i) the minimax concave (MC) loss function, (ii) the MC penalty function, and (iii) the squared Frobenius norm. The MC-based loss and penalty functions enhance robustness and group sparsity, respectively, while the squared Frobenius norm induces the convexity. The problem is solved, via reformulation, by the primal-dual splitting method, for which the convergence condition is derived. Numerical examples show that the proposed approach enjoys remarkable outlier robustness.
基于极大极小凹损失函数的鲁棒联合稀疏信号恢复
我们提出了一种鲁棒的方法来恢复联合稀疏信号在异常值的存在。我们将恢复任务表述为包含三个项的最小化问题:(i)极大极小凹(MC)损失函数,(ii) MC惩罚函数,以及(iii) Frobenius范数的平方。基于mc的损失函数和惩罚函数分别增强了鲁棒性和群稀疏性,而平方Frobenius范数诱导了凸性。通过对原对偶分裂方法的重新表述,得到了该方法的收敛条件。数值算例表明,该方法具有显著的离群鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信