Unsupervised Contradiction Detection using Sentence Transformations

Q3 Arts and Humanities
Icon Pub Date : 2023-03-01 DOI:10.1109/ICNLP58431.2023.00065
Gerrit Schumann, Jorge Marx Gómez
{"title":"Unsupervised Contradiction Detection using Sentence Transformations","authors":"Gerrit Schumann, Jorge Marx Gómez","doi":"10.1109/ICNLP58431.2023.00065","DOIUrl":null,"url":null,"abstract":"Contradiction detection (CD) is a subfield of Natural Language Inference (NLI) that is relevant to many domains where contradictory statements in texts should be avoided (e.g., in financial or regulatory documents). With the advent of large annotated NLI datasets, there has been an increased focus on supervised deep-learning approaches in this research area. However, since this training data does not necessarily reflect the characteristic properties of the application data, unsupervised CD approaches are still relevant for certain domains or languages. In this paper, we therefore take up a recently published unsupervised NLI approach, reproduce parts of the proposed sentence transformations, extend it with various modifications, and evaluate it for the sole task of contradiction detection. The results show that under the exclusion of certain transformations types, an accuracy of 71.42 can be achieved on the SNLI test dataset.","PeriodicalId":53637,"journal":{"name":"Icon","volume":"40 1","pages":"319-324"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNLP58431.2023.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

Contradiction detection (CD) is a subfield of Natural Language Inference (NLI) that is relevant to many domains where contradictory statements in texts should be avoided (e.g., in financial or regulatory documents). With the advent of large annotated NLI datasets, there has been an increased focus on supervised deep-learning approaches in this research area. However, since this training data does not necessarily reflect the characteristic properties of the application data, unsupervised CD approaches are still relevant for certain domains or languages. In this paper, we therefore take up a recently published unsupervised NLI approach, reproduce parts of the proposed sentence transformations, extend it with various modifications, and evaluate it for the sole task of contradiction detection. The results show that under the exclusion of certain transformations types, an accuracy of 71.42 can be achieved on the SNLI test dataset.
基于句子变换的无监督矛盾检测
矛盾检测(CD)是自然语言推理(NLI)的一个子领域,与文本中应该避免矛盾陈述的许多领域相关(例如,在金融或监管文件中)。随着大型注释NLI数据集的出现,人们越来越关注该研究领域的监督深度学习方法。然而,由于这种训练数据不一定反映应用程序数据的特征属性,因此无监督CD方法仍然与某些领域或语言相关。因此,在本文中,我们采用了最近发表的一种无监督NLI方法,再现了所提出的句子转换的部分内容,用各种修改对其进行扩展,并对其进行评估,以完成矛盾检测的唯一任务。结果表明,在排除某些转换类型的情况下,在SNLI测试数据集上可以达到71.42的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Icon
Icon Arts and Humanities-History and Philosophy of Science
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信