Bhawna Sharma, K. Kishor, Sandeep Sharma, R. Makkar
{"title":"Design and Simulation of Broadband Beam Splitter on a Silicon Nitride Platform for Optical Coherence Tomography","authors":"Bhawna Sharma, K. Kishor, Sandeep Sharma, R. Makkar","doi":"10.1080/01468030.2019.1639001","DOIUrl":null,"url":null,"abstract":"ABSTRACT Integrated photonics enables the miniaturization of bulk optical components for biosensing applications such as optical coherence tomography (OCT) and is therefore promising for future lab-on-chip solutions. Here, we report the design and simulation of a compact low loss broadband beam splitter with arbitrary coupling ratios on silicon nitride platform for OCT systems. The reported coupler uses asymmetric waveguide-based phase control section for 10:90, 20:80, 30:70, 40:60, and 50:50 splitting ratios and is broadband over 100 nm with the central wavelength of 850 nm. The couplers are realized for transverse electric, transverse magnetic, and fully vectorial modes, and maximum excess loss for all mode types is reported to be less than 0.19 dB. The design tolerance of waveguide width and thickness of the designed coupler is further calculated and is within fabrication limit.","PeriodicalId":50449,"journal":{"name":"Fiber and Integrated Optics","volume":"20 1","pages":"247 - 257"},"PeriodicalIF":2.3000,"publicationDate":"2019-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fiber and Integrated Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/01468030.2019.1639001","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 7
Abstract
ABSTRACT Integrated photonics enables the miniaturization of bulk optical components for biosensing applications such as optical coherence tomography (OCT) and is therefore promising for future lab-on-chip solutions. Here, we report the design and simulation of a compact low loss broadband beam splitter with arbitrary coupling ratios on silicon nitride platform for OCT systems. The reported coupler uses asymmetric waveguide-based phase control section for 10:90, 20:80, 30:70, 40:60, and 50:50 splitting ratios and is broadband over 100 nm with the central wavelength of 850 nm. The couplers are realized for transverse electric, transverse magnetic, and fully vectorial modes, and maximum excess loss for all mode types is reported to be less than 0.19 dB. The design tolerance of waveguide width and thickness of the designed coupler is further calculated and is within fabrication limit.
期刊介绍:
Fiber and Integrated Optics , now incorporating the International Journal of Optoelectronics, is an international bimonthly journal that disseminates significant developments and in-depth surveys in the fields of fiber and integrated optics. The journal is unique in bridging the major disciplines relevant to optical fibers and electro-optical devices. This results in a balanced presentation of basic research, systems applications, and economics. For more than a decade, Fiber and Integrated Optics has been a valuable forum for scientists, engineers, manufacturers, and the business community to exchange and discuss techno-economic advances in the field.