Mathematical modeling and optimization of semi-regenerative catalytic reforming of naphtha

IF 1.8 4区 工程技术 Q4 ENERGY & FUELS
E. Ivanchina, Ekaterina Chernyakova, Inna Pchelintseva, D. Poluboyartsev
{"title":"Mathematical modeling and optimization of semi-regenerative catalytic reforming of naphtha","authors":"E. Ivanchina, Ekaterina Chernyakova, Inna Pchelintseva, D. Poluboyartsev","doi":"10.2516/ogst/2021041","DOIUrl":null,"url":null,"abstract":"Catalytic naphtha reforming is extensively applied in petroleum refineries and petrochemical industries to convert low-octane naphtha into high-octane gasoline. Besides, this process is an important source of hydrogen and aromatics obtained as side products. The bifunctional Pt-catalysts for reforming are deactivated by coke formation during an industrial operation. This results to a reduction in the yield and octane number. In this paper modeling and optimization of a semi-egenerative catalytic reforming of naphtha is carried out considering catalyst deactivation and a complex multicomponent composition of a hydrocarbon mixture. The mathematical model of semi-egenerative catalytic reforming considering coke formation process was proposed. The operating parameters (yield, octane number, activity) for different catalysts were predicted and optimized. It was found that a decrease in the pressure range from 1.5 to 1.2 MPa at the temperature 478–481 °C and feedstock space velocity equal to 1.4–1 h induces an increase in the yield for 1–2 wt.% due to an increase in the aromatization reactions rate and a decrease in the hydrocracking reactions rate depending on the feedstock composition and catalyst type. It is shown that the decrease in pressure is limited by the requirements for the catalyst stability due to the increase in the coke formation rate. The criterion of optimality is the yield, expressed in octanes per tons.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2021041","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 5

Abstract

Catalytic naphtha reforming is extensively applied in petroleum refineries and petrochemical industries to convert low-octane naphtha into high-octane gasoline. Besides, this process is an important source of hydrogen and aromatics obtained as side products. The bifunctional Pt-catalysts for reforming are deactivated by coke formation during an industrial operation. This results to a reduction in the yield and octane number. In this paper modeling and optimization of a semi-egenerative catalytic reforming of naphtha is carried out considering catalyst deactivation and a complex multicomponent composition of a hydrocarbon mixture. The mathematical model of semi-egenerative catalytic reforming considering coke formation process was proposed. The operating parameters (yield, octane number, activity) for different catalysts were predicted and optimized. It was found that a decrease in the pressure range from 1.5 to 1.2 MPa at the temperature 478–481 °C and feedstock space velocity equal to 1.4–1 h induces an increase in the yield for 1–2 wt.% due to an increase in the aromatization reactions rate and a decrease in the hydrocracking reactions rate depending on the feedstock composition and catalyst type. It is shown that the decrease in pressure is limited by the requirements for the catalyst stability due to the increase in the coke formation rate. The criterion of optimality is the yield, expressed in octanes per tons.
石脑油半再生催化重整的数学建模与优化
催化石脑油重整广泛应用于炼油厂和石化行业,将低辛烷值的石脑油转化为高辛烷值的汽油。此外,该工艺是氢气和芳烃副产品的重要来源。用于重整的双功能pt催化剂在工业操作过程中因焦炭的形成而失活。这导致了产率和辛烷值的降低。考虑催化剂失活和烃类混合物复杂的多组分组成,对石脑油半再生催化重整过程进行了建模和优化。提出了考虑焦炭形成过程的半再生催化重整数学模型。对不同催化剂的操作参数(产率、辛烷值、活度)进行了预测和优化。结果表明,在温度478 ~ 481℃,进料空速为1.4 ~ 1 h的条件下,压力在1.5 ~ 1.2 MPa范围内降低,由于芳香化反应速率提高,加氢裂化反应速率降低,收率提高1 ~ 2 wt.%。结果表明,由于焦炭生成速率的提高,对催化剂稳定性的要求限制了压力的降低。最优的标准是产量,以每吨辛烷值表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition. OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases. The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month. Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信