{"title":"Turing instability in the one-parameter Gierer–Meinhardt system","authors":"S. Revina, A. Ryabov","doi":"10.18500/0869-6632-003053","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to find the region of necessary and sufficient conditions for diffusion instability on the parameter plane (τ, d) of the Gierer–Meinhardt system, where τ is the relaxation parameter, d is the dimensionless diffusion coefficient; to derive analytically the dependence of the critical wave number on the characteristic size of the spatial region; to obtain explicit representations of secondary spatially distributed structures, formed as a result of bifurcation of a spatially homogeneous equilibrium position, in the form of series in degrees of supercriticality. Methods. To find the region of Turing instability, methods of linear stability analysis are applied. To find secondary solutions (Turing structures), the Lyapunov– Schmidt method is used in the form developed by V. I. Yudovich. Results. Expressions for the critical diffusion coefficient in terms of the eigenvalues of the Laplace operator for an arbitrary bounded region are obtained. The dependence of the critical diffusion coefficient on the characteristic size of the region is found explicitly in two cases: when the region is an interval and a rectangle. Explicit expressions for the first terms of the expansions of the secondary stationary solutions with respect to the supercriticality parameter are constructed in the one-dimensional case, as well as for a rectangle, when one of the wave numbers is equal to zero. In these cases, sufficient conditions for a soft loss of stability are found, and examples of secondary solutions are given. Conclusion. A general approach is proposed for finding the region of Turing instability and constructing secondary spatially distributed structures. This approach can be applied to a wide class of mathematical models described by a system of two reaction–diffusion equations.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"111 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this work is to find the region of necessary and sufficient conditions for diffusion instability on the parameter plane (τ, d) of the Gierer–Meinhardt system, where τ is the relaxation parameter, d is the dimensionless diffusion coefficient; to derive analytically the dependence of the critical wave number on the characteristic size of the spatial region; to obtain explicit representations of secondary spatially distributed structures, formed as a result of bifurcation of a spatially homogeneous equilibrium position, in the form of series in degrees of supercriticality. Methods. To find the region of Turing instability, methods of linear stability analysis are applied. To find secondary solutions (Turing structures), the Lyapunov– Schmidt method is used in the form developed by V. I. Yudovich. Results. Expressions for the critical diffusion coefficient in terms of the eigenvalues of the Laplace operator for an arbitrary bounded region are obtained. The dependence of the critical diffusion coefficient on the characteristic size of the region is found explicitly in two cases: when the region is an interval and a rectangle. Explicit expressions for the first terms of the expansions of the secondary stationary solutions with respect to the supercriticality parameter are constructed in the one-dimensional case, as well as for a rectangle, when one of the wave numbers is equal to zero. In these cases, sufficient conditions for a soft loss of stability are found, and examples of secondary solutions are given. Conclusion. A general approach is proposed for finding the region of Turing instability and constructing secondary spatially distributed structures. This approach can be applied to a wide class of mathematical models described by a system of two reaction–diffusion equations.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.