Phuc Nguyen, N. Kertkeidkachorn, R. Ichise, Hideaki Takeda
{"title":"MTab4D: Semantic annotation of tabular data with DBpedia","authors":"Phuc Nguyen, N. Kertkeidkachorn, R. Ichise, Hideaki Takeda","doi":"10.3233/sw-223098","DOIUrl":null,"url":null,"abstract":"Semantic annotation of tabular data is the process of matching table elements with knowledge graphs. As a result, the table contents could be interpreted or inferred using knowledge graph concepts, enabling them to be useful in downstream applications such as data analytics and management. Nevertheless, semantic annotation tasks are challenging due to insufficient tabular data descriptions, heterogeneous schema, and vocabulary issues. This paper presents an automatic semantic annotation system for tabular data, called MTab4D, to generate annotations with DBpedia in three annotation tasks: 1) matching table cells to entities, 2) matching columns to entity types, and 3) matching pairs of columns to properties. In particular, we propose an annotation pipeline that combines multiple matching signals from different table elements to address schema heterogeneity, data ambiguity, and noisiness. Additionally, this paper provides insightful analysis and extra resources on benchmarking semantic annotation with knowledge graphs. Experimental results on the original and adapted datasets of the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab 2019) show that our system achieves an impressive performance for the three annotation tasks. MTab4D’s repository is publicly available at https://github.com/phucty/mtab4dbpedia.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-223098","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Semantic annotation of tabular data is the process of matching table elements with knowledge graphs. As a result, the table contents could be interpreted or inferred using knowledge graph concepts, enabling them to be useful in downstream applications such as data analytics and management. Nevertheless, semantic annotation tasks are challenging due to insufficient tabular data descriptions, heterogeneous schema, and vocabulary issues. This paper presents an automatic semantic annotation system for tabular data, called MTab4D, to generate annotations with DBpedia in three annotation tasks: 1) matching table cells to entities, 2) matching columns to entity types, and 3) matching pairs of columns to properties. In particular, we propose an annotation pipeline that combines multiple matching signals from different table elements to address schema heterogeneity, data ambiguity, and noisiness. Additionally, this paper provides insightful analysis and extra resources on benchmarking semantic annotation with knowledge graphs. Experimental results on the original and adapted datasets of the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab 2019) show that our system achieves an impressive performance for the three annotation tasks. MTab4D’s repository is publicly available at https://github.com/phucty/mtab4dbpedia.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.