Learning Deep Spatiotemporal Feature for Engagement Recognition of Online Courses

Lin Geng, Min Xu, Zeqiang Wei, Xiuzhuang Zhou
{"title":"Learning Deep Spatiotemporal Feature for Engagement Recognition of Online Courses","authors":"Lin Geng, Min Xu, Zeqiang Wei, Xiuzhuang Zhou","doi":"10.1109/SSCI44817.2019.9002713","DOIUrl":null,"url":null,"abstract":"This paper focuses on the study of engagement recognition of online courses from students’ appearance and behavioral information using deep learning methods. Automatic engagement recognition can be applied to developing effective online instructional and assessment strategies for promoting learning. In this paper, we make two contributions. First, we propose a Convolutional 3D (C3D) neural networks-based approach to automatic engagement recognition, which models both the appearance and motion information in videos and recognize student engagement automatically. Second, we introduce the Focal Loss to address the class-imbalanced data distribution problem in engagement recognition by adaptively decreasing the weight of high engagement samples while increasing the weight of low engagement samples in deep spatiotemporal feature learning. Experiments on the DAiSEE dataset show the effectiveness of our method in comparison with the state-of-the-art automatic engagement recognition methods.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"76 1","pages":"442-447"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper focuses on the study of engagement recognition of online courses from students’ appearance and behavioral information using deep learning methods. Automatic engagement recognition can be applied to developing effective online instructional and assessment strategies for promoting learning. In this paper, we make two contributions. First, we propose a Convolutional 3D (C3D) neural networks-based approach to automatic engagement recognition, which models both the appearance and motion information in videos and recognize student engagement automatically. Second, we introduce the Focal Loss to address the class-imbalanced data distribution problem in engagement recognition by adaptively decreasing the weight of high engagement samples while increasing the weight of low engagement samples in deep spatiotemporal feature learning. Experiments on the DAiSEE dataset show the effectiveness of our method in comparison with the state-of-the-art automatic engagement recognition methods.
基于深度时空特征的在线课程参与识别研究
本文主要利用深度学习的方法,从学生的外表和行为信息两方面对网络课程的投入度识别进行研究。自动参与识别可以应用于开发有效的在线教学和评估策略,以促进学习。在本文中,我们做了两个贡献。首先,我们提出了一种基于卷积3D (C3D)神经网络的自动参与识别方法,该方法对视频中的外观和运动信息进行建模,并自动识别学生的参与。其次,在深度时空特征学习中引入Focal Loss,通过自适应地降低高参与度样本的权重,同时增加低参与度样本的权重,来解决参与度识别中数据分布类不平衡的问题。在DAiSEE数据集上的实验表明,与最先进的自动交战识别方法相比,我们的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信