{"title":"Orbital shadowing property on chain transitive sets for generic diffeomorphisms","authors":"Manseob Lee","doi":"10.2478/ausm-2020-0009","DOIUrl":null,"url":null,"abstract":"Abstract Let f : M → M be a diffeomorphism on a closed smooth n(≥ 2) dimensional manifold M. We show that C1 generically, if a diffeomorphism f has the orbital shadowing property on locally maximal chain transitive sets which admits a dominated splitting then it is hyperbolic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2020-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Let f : M → M be a diffeomorphism on a closed smooth n(≥ 2) dimensional manifold M. We show that C1 generically, if a diffeomorphism f has the orbital shadowing property on locally maximal chain transitive sets which admits a dominated splitting then it is hyperbolic.