{"title":"Study on the Synthesis, Characterization of p-CuSCN/n-Si Heterojunction","authors":"Xiongyu Chao, Chen Lei, H. Yuan","doi":"10.2174/1874088X01307010029","DOIUrl":null,"url":null,"abstract":"The p-CuSCN/n-Si heterojunction is fabricated by depositing CuSCN films on n-Si (111) films substrate using successive ionic layer adsorption and reaction (SULAR). CuSCN films show -phase structure by virtue of X-ray diffraction (XRD) spectroscopy. ZnO/CuSCN heterojunctions exhibit good diode characteristics and photovoltaic effects with illumination form its current-voltage (I-V) measurements. The linear relationship of 1/C 2 versus voltage curve implies that the built-in potential Vbi and the conduction band offset of the heterojunctions were found to be 2.1eV and 1.5eV, respectively. The forward conduction is determined by trap-assisted space charge limited current mechanism. At forward bias voltages, the electronic potential barrier is larger than holes in the p-CuSCN/n-Si heterojunction interface. In this voltage area, a single carrier injuction is induced and the main current of p-CuSCN/n-Si heterojunction is hole current. In addition, a band diagram of ZnO/CuSCN heterojunctions is also proposed to explain the transport mechanism. This heterojunction diode can be well used to light emission devices and photovoltaic devices.","PeriodicalId":22791,"journal":{"name":"The Open Materials Science Journal","volume":"109 1","pages":"29-32"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Materials Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874088X01307010029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The p-CuSCN/n-Si heterojunction is fabricated by depositing CuSCN films on n-Si (111) films substrate using successive ionic layer adsorption and reaction (SULAR). CuSCN films show -phase structure by virtue of X-ray diffraction (XRD) spectroscopy. ZnO/CuSCN heterojunctions exhibit good diode characteristics and photovoltaic effects with illumination form its current-voltage (I-V) measurements. The linear relationship of 1/C 2 versus voltage curve implies that the built-in potential Vbi and the conduction band offset of the heterojunctions were found to be 2.1eV and 1.5eV, respectively. The forward conduction is determined by trap-assisted space charge limited current mechanism. At forward bias voltages, the electronic potential barrier is larger than holes in the p-CuSCN/n-Si heterojunction interface. In this voltage area, a single carrier injuction is induced and the main current of p-CuSCN/n-Si heterojunction is hole current. In addition, a band diagram of ZnO/CuSCN heterojunctions is also proposed to explain the transport mechanism. This heterojunction diode can be well used to light emission devices and photovoltaic devices.