Logistic regression and random forest unveil key molecular descriptors of druglikeness

IF 0.4 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
L. T. Billones, Nadia B. Morales, J. Billones
{"title":"Logistic regression and random forest unveil key molecular descriptors of druglikeness","authors":"L. T. Billones, Nadia B. Morales, J. Billones","doi":"10.1273/CBIJ.21.39","DOIUrl":null,"url":null,"abstract":"The identification of molecular descriptors that embody the chemical information for druglikeness will be a step forward in data-driven drug discovery and development endeavor. In this study, over 4000 Dragon-type molecular properties were generated for approximately 2000 known drugs and 2000 surrogate nondrugs. Logistic Regression (LogR) and Random Forest (RF) techniques were carried out to unveil the crucial molecular descriptors that can adequately classify a compound as drug or nondrug. Ten one-variable LogR models each demonstrated at least 70% prediction accuracy. A two-variable model consisting of HVcpx and MDDD correctly classified 85% of the test compounds. The best LogR model with 89.0% prediction accuracy identified five most influential descriptors for druglikeness: an information index HVcpx , topological index MDDD , a ring descriptor NNRS , X2A or average connectivity index of order 2, and walk and path count SRW05. The best RF model involving 10 only weakly correlated descriptors was found to be 92.5% accurate and at par with the RF and LogR models that consisted of over 200 variables. The model featured: molecular weight, MW ; average molecular weight, AMW ; rotatable bond fraction, RBF; percentage carbon, C%; maximal electrotopological negative variation, MAXDN ; all-path Wiener index, Wap ; structural information content index, neighborhood symmetry of 1 order, SIC1 ; number of nitrogen atoms, nN; 2D Petitjean shape index, PJI2 ; and self-returning walk count of order 5, SRW05 . Many of these descriptors have straightforward chemical interpretability and future applicability as druglikeness filters in virtual high throughput drug discovery.","PeriodicalId":40659,"journal":{"name":"Chem-Bio Informatics Journal","volume":"113 1","pages":"39-58"},"PeriodicalIF":0.4000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem-Bio Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1273/CBIJ.21.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The identification of molecular descriptors that embody the chemical information for druglikeness will be a step forward in data-driven drug discovery and development endeavor. In this study, over 4000 Dragon-type molecular properties were generated for approximately 2000 known drugs and 2000 surrogate nondrugs. Logistic Regression (LogR) and Random Forest (RF) techniques were carried out to unveil the crucial molecular descriptors that can adequately classify a compound as drug or nondrug. Ten one-variable LogR models each demonstrated at least 70% prediction accuracy. A two-variable model consisting of HVcpx and MDDD correctly classified 85% of the test compounds. The best LogR model with 89.0% prediction accuracy identified five most influential descriptors for druglikeness: an information index HVcpx , topological index MDDD , a ring descriptor NNRS , X2A or average connectivity index of order 2, and walk and path count SRW05. The best RF model involving 10 only weakly correlated descriptors was found to be 92.5% accurate and at par with the RF and LogR models that consisted of over 200 variables. The model featured: molecular weight, MW ; average molecular weight, AMW ; rotatable bond fraction, RBF; percentage carbon, C%; maximal electrotopological negative variation, MAXDN ; all-path Wiener index, Wap ; structural information content index, neighborhood symmetry of 1 order, SIC1 ; number of nitrogen atoms, nN; 2D Petitjean shape index, PJI2 ; and self-returning walk count of order 5, SRW05 . Many of these descriptors have straightforward chemical interpretability and future applicability as druglikeness filters in virtual high throughput drug discovery.
逻辑回归和随机森林揭示了药物相似性的关键分子描述符
识别包含药物相似性化学信息的分子描述符将是数据驱动的药物发现和开发努力的一个进步。在这项研究中,大约2000种已知药物和2000种替代非药物产生了4000多种龙型分子特性。逻辑回归(LogR)和随机森林(RF)技术揭示了关键的分子描述符,可以充分地将化合物分类为药物或非药物。10个单变量LogR模型均显示出至少70%的预测精度。由HVcpx和MDDD组成的双变量模型正确分类了85%的测试化合物。最佳LogR模型预测准确率为89.0%,识别出5个最具影响力的药物相似性描述符:信息指数HVcpx、拓扑指数MDDD、环状描述符NNRS、X2A或2阶平均连通性指数、行走路径数SRW05。最好的RF模型只包含10个弱相关描述符,准确率为92.5%,与包含200多个变量的RF和LogR模型相当。该模型的特点是:分子量,MW;平均分子量(AMW);可旋转键分数,RBF;碳百分比,C%;最大电拓扑负变异(MAXDN);全径Wiener指数;结构信息含量指数,1阶邻域对称,SIC1;氮原子数nN;二维Petitjean形状指数,PJI2;5阶自返回行走计数SRW05。许多这些描述符具有直接的化学可解释性和未来适用性,作为虚拟高通量药物发现中的药物相似过滤器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem-Bio Informatics Journal
Chem-Bio Informatics Journal BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
0.60
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信