On the Dynamics of the Solar System I: Orbital Inclination and Nodal Precession

Q4 Mathematics
R. G. Calvet
{"title":"On the Dynamics of the Solar System I: Orbital Inclination and Nodal Precession","authors":"R. G. Calvet","doi":"10.7546/giq-23-2022-1-38","DOIUrl":null,"url":null,"abstract":"The dynamic equations of the $n$-body problem are solved in relative coordinates and applied to the solar system, whence the mean variation rates of the longitudes of the ascending nodes and of the inclinations of the planetary orbits at J2000 have been calculated with respect to the ecliptic and to the Laplace invariable plane under the approximation of circular orbits. The theory so obtained supersedes the Lagrange-Laplace secular evolution theory. Formulas for the change from the equatorial and ecliptic coordinates to those of the Laplace invariable plane are also provided.","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/giq-23-2022-1-38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic equations of the $n$-body problem are solved in relative coordinates and applied to the solar system, whence the mean variation rates of the longitudes of the ascending nodes and of the inclinations of the planetary orbits at J2000 have been calculated with respect to the ecliptic and to the Laplace invariable plane under the approximation of circular orbits. The theory so obtained supersedes the Lagrange-Laplace secular evolution theory. Formulas for the change from the equatorial and ecliptic coordinates to those of the Laplace invariable plane are also provided.
太阳系动力学ⅰ:轨道倾角和节点进动
在相对坐标系中求解了天体动力学方程,并将其应用于太阳系,计算了J2000点行星轨道的升交点经度和倾角相对于黄道和圆形轨道近似下的拉普拉斯不变平面的平均变化率。这样得到的理论取代了拉格朗日-拉普拉斯的世俗进化论。给出了从赤道和黄道坐标系到拉普拉斯不变平面的变换公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry, Integrability and Quantization
Geometry, Integrability and Quantization Mathematics-Mathematical Physics
CiteScore
0.70
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信