Algebras of Smooth Functions and Holography of Traversing Flows

G. Katz
{"title":"Algebras of Smooth Functions and Holography of Traversing Flows","authors":"G. Katz","doi":"10.34257/gjsfrfvol23is2pg1","DOIUrl":null,"url":null,"abstract":"Let X be a smooth compact manifold and v a vector field on X which admits a smooth function f : X ! R such that df(v) > 0. Let @X be the boundary of X. We denote by C1(X) the algebra of smooth functions on X and by C1(@X) the algebra of smooth functions on @X. With the help of (v; f), we introduce two subalgebras A(v) and B(f) of C1(@X) and prove (under mild hypotheses) that C1(X) _ A(v) ^B(f), the topological tensor product. Thus the topological algebras A(v) and B(f), viewed as boundary data, allow for a reconstruction of C1(X). As a result, A(v) and B(f) allow for the recovery of the smooth topological type of the bulk X.","PeriodicalId":12547,"journal":{"name":"Global Journal of Science Frontier Research","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Science Frontier Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/gjsfrfvol23is2pg1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a smooth compact manifold and v a vector field on X which admits a smooth function f : X ! R such that df(v) > 0. Let @X be the boundary of X. We denote by C1(X) the algebra of smooth functions on X and by C1(@X) the algebra of smooth functions on @X. With the help of (v; f), we introduce two subalgebras A(v) and B(f) of C1(@X) and prove (under mild hypotheses) that C1(X) _ A(v) ^B(f), the topological tensor product. Thus the topological algebras A(v) and B(f), viewed as boundary data, allow for a reconstruction of C1(X). As a result, A(v) and B(f) allow for the recovery of the smooth topological type of the bulk X.
平滑函数代数与横流全息
设X是一个光滑紧流形,v是X上的一个向量场,它允许一个光滑函数f: X !R使得df(v) > 0。设@X为X的边界,用C1(X)表示X上光滑函数的代数,用C1(@X)表示@X上光滑函数的代数。借助(v);f),引入C1(@X)的两个子代数A(v)和B(f),并证明(在温和假设下)C1(X) _ A(v) ^B(f)是拓扑张量积。因此,拓扑代数A(v)和B(f),被视为边界数据,允许重构C1(X)。因此,a (v)和B(f)允许恢复体X的光滑拓扑类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信