Fast and Effective L0 Gradient Minimization by Region Fusion

Nguyen Ho Man Rang, M. S. Brown
{"title":"Fast and Effective L0 Gradient Minimization by Region Fusion","authors":"Nguyen Ho Man Rang, M. S. Brown","doi":"10.1109/ICCV.2015.32","DOIUrl":null,"url":null,"abstract":"L0 gradient minimization can be applied to an input signal to control the number of non-zero gradients. This is useful in reducing small gradients generally associated with signal noise, while preserving important signal features. In computer vision, L0 gradient minimization has found applications in image denoising, 3D mesh denoising, and image enhancement. Minimizing the L0 norm, however, is an NP-hard problem because of its non-convex property. As a result, existing methods rely on approximation strategies to perform the minimization. In this paper, we present a new method to perform L0 gradient minimization that is fast and effective. Our method uses a descent approach based on region fusion that converges faster than other methods while providing a better approximation of the optimal L0 norm. In addition, our method can be applied to both 2D images and 3D mesh topologies. The effectiveness of our approach is demonstrated on a number of examples.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"111 1","pages":"208-216"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

L0 gradient minimization can be applied to an input signal to control the number of non-zero gradients. This is useful in reducing small gradients generally associated with signal noise, while preserving important signal features. In computer vision, L0 gradient minimization has found applications in image denoising, 3D mesh denoising, and image enhancement. Minimizing the L0 norm, however, is an NP-hard problem because of its non-convex property. As a result, existing methods rely on approximation strategies to perform the minimization. In this paper, we present a new method to perform L0 gradient minimization that is fast and effective. Our method uses a descent approach based on region fusion that converges faster than other methods while providing a better approximation of the optimal L0 norm. In addition, our method can be applied to both 2D images and 3D mesh topologies. The effectiveness of our approach is demonstrated on a number of examples.
基于区域融合的快速有效L0梯度最小化算法
L0梯度最小化可以应用于输入信号来控制非零梯度的数量。这在减小通常与信号噪声相关的小梯度,同时保留重要的信号特征方面是有用的。在计算机视觉中,L0梯度最小化在图像去噪、3D网格去噪和图像增强中得到了应用。然而,最小化L0范数是一个np困难问题,因为它的非凸性。因此,现有的方法依赖于近似策略来执行最小化。本文提出了一种快速有效的L0梯度最小化方法。我们的方法使用了一种基于区域融合的下降方法,它比其他方法收敛得更快,同时提供了更好的最优L0范数的近似值。此外,我们的方法可以应用于二维图像和三维网格拓扑。若干实例证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信