Hydrogen Adsorption on Palladium and Platinum Overlayers: DFT Study

I. Pašti, N. Gavrilov, S. Mentus
{"title":"Hydrogen Adsorption on Palladium and Platinum Overlayers: DFT Study","authors":"I. Pašti, N. Gavrilov, S. Mentus","doi":"10.1155/2011/305634","DOIUrl":null,"url":null,"abstract":"Hydrogen adsorption on twenty different palladium and platinum overlayer surfaces with (111) crystallographic orientation was studied by means of periodic DFT calculations on the GGA-PBE level. Palladium and platinum overlayers here denote either the Pd and Pt mono- and bilayers deposited over (111) crystallographic plane of Pd, Pt, Cu, and Au monocrystals or the (111) crystallographic plane of Pd and Pt monocrystals with inserted one-atom-thick surface underlayer of Pd, Pt, Cu, and Au. The attention was focused on the bond lengths, hydrogen adsorption energetics, mobility of adsorbed hydrogen, and surface reactivity toward hydrogen electrode reactions. Both the ligand and strain effects were considered, found to lead to a significant modification of the electronic structure of Pd and Pt overlayers, described through the position of the d-band center, and tuning of the hydrogen adsorption energy in the range that covers approximately 120 kJmol−1. Mobility of hydrogen adsorbed on studied overlayers was found to be determined by hydrogen-metal binding energy. Obtained results regarding Pd layers on Pt(111) and Au(111) surfaces, in conjunction with some of the recent experimental data, were used to explain its electrocatalytic activity towards hydrogen evolution reaction.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/305634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

Hydrogen adsorption on twenty different palladium and platinum overlayer surfaces with (111) crystallographic orientation was studied by means of periodic DFT calculations on the GGA-PBE level. Palladium and platinum overlayers here denote either the Pd and Pt mono- and bilayers deposited over (111) crystallographic plane of Pd, Pt, Cu, and Au monocrystals or the (111) crystallographic plane of Pd and Pt monocrystals with inserted one-atom-thick surface underlayer of Pd, Pt, Cu, and Au. The attention was focused on the bond lengths, hydrogen adsorption energetics, mobility of adsorbed hydrogen, and surface reactivity toward hydrogen electrode reactions. Both the ligand and strain effects were considered, found to lead to a significant modification of the electronic structure of Pd and Pt overlayers, described through the position of the d-band center, and tuning of the hydrogen adsorption energy in the range that covers approximately 120 kJmol−1. Mobility of hydrogen adsorbed on studied overlayers was found to be determined by hydrogen-metal binding energy. Obtained results regarding Pd layers on Pt(111) and Au(111) surfaces, in conjunction with some of the recent experimental data, were used to explain its electrocatalytic activity towards hydrogen evolution reaction.
钯和铂覆盖层对氢的吸附:DFT研究
采用GGA-PBE水平的周期DFT计算方法,研究了20种不同的(111)取向钯和铂覆层表面对氢的吸附。这里的钯和铂覆盖层是指沉积在Pd、Pt、Cu和Au单晶(111)晶体平面上的Pd和Pt单层和双层,或者是在Pd和Pt单晶(111)晶体平面上插入Pd、Pt、Cu和Au的一个原子厚的表面。重点研究了键长、氢吸附能量、吸附氢的迁移率以及氢电极反应的表面反应性。我们考虑了配体和应变效应,发现它们会导致Pd和Pt覆盖层的电子结构发生显著的改变,这可以通过d波段中心的位置来描述,并将氢吸附能调整在大约120 kJmol−1的范围内。研究发现,吸附在覆层上的氢的迁移率是由氢-金属结合能决定的。本文利用Pt(111)和Au(111)表面Pd层的实验结果,结合最近的一些实验数据,解释了其对析氢反应的电催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信