On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation

IF 0.6 Q3 MATHEMATICS
S. Benarab, E. Panasenko
{"title":"On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation","authors":"S. Benarab, E. Panasenko","doi":"10.35634/vm220302","DOIUrl":null,"url":null,"abstract":"Set-valued mappings acting from a partially ordered space $X=(X,\\leq)$ to a set $Y$ on which a reflexive binary relation $\\vartheta$ is given (this relation is not supposed to be antisymmetric or transitive, i.e., $\\vartheta$ is not an order in $Y$), are considered. For such mappings, analogues of the concepts of covering and monotonicity are introduced. These concepts are used to study the inclusion $F(x)\\ni \\tilde{y},$ where $F\\colon X \\rightrightarrows Y,$ $\\tilde{y}\\in Y.$ It is assumed that for some given $x_0 \\in X,$ there exists $y_{0} \\in F(x_{0})$ such that $(\\tilde{y},y_{0}) \\in \\vartheta.$ Conditions for the existence of a solution $x\\in X$ satisfying the inequality $x\\leq x_0$ are obtained, as well as those for the existence of minimal and least solutions. The property of stability of solutions of the considered inclusion to changes of the set-valued mapping $F$ and of the element $\\widetilde{y}$ is also defined and investigated. Namely, the sequence of “perturbed” inclusions $F_i(x)\\ni \\tilde{y}_i,$ $i\\in \\mathbb{N},$ is assumed, and the conditions of existence of solutions $x_i \\in X$ such that for any increasing sequence of integers $\\{i_n\\}$ there holds $\\sup_{n \\in \\mathbb{N}}\\{x_{i_{n}}\\}= x,$ where $x \\in X$ is a solution of the initial inclusion, are derived.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm220302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Set-valued mappings acting from a partially ordered space $X=(X,\leq)$ to a set $Y$ on which a reflexive binary relation $\vartheta$ is given (this relation is not supposed to be antisymmetric or transitive, i.e., $\vartheta$ is not an order in $Y$), are considered. For such mappings, analogues of the concepts of covering and monotonicity are introduced. These concepts are used to study the inclusion $F(x)\ni \tilde{y},$ where $F\colon X \rightrightarrows Y,$ $\tilde{y}\in Y.$ It is assumed that for some given $x_0 \in X,$ there exists $y_{0} \in F(x_{0})$ such that $(\tilde{y},y_{0}) \in \vartheta.$ Conditions for the existence of a solution $x\in X$ satisfying the inequality $x\leq x_0$ are obtained, as well as those for the existence of minimal and least solutions. The property of stability of solutions of the considered inclusion to changes of the set-valued mapping $F$ and of the element $\widetilde{y}$ is also defined and investigated. Namely, the sequence of “perturbed” inclusions $F_i(x)\ni \tilde{y}_i,$ $i\in \mathbb{N},$ is assumed, and the conditions of existence of solutions $x_i \in X$ such that for any increasing sequence of integers $\{i_n\}$ there holds $\sup_{n \in \mathbb{N}}\{x_{i_{n}}\}= x,$ where $x \in X$ is a solution of the initial inclusion, are derived.
在一个包含上,从偏序集合映射到具有自反二元关系的集合
考虑从部分有序空间$X=(X,\leq)$到给定自反二元关系$\vartheta$的集合$Y$的集值映射(该关系不应该是反对称的或传递的,即$\vartheta$不是$Y$中的一个顺序)。对于这样的映射,引入了覆盖和单调性概念的类似概念。这些概念用于研究包含$F(x)\ni \tilde{y},$,其中$F\colon X \rightrightarrows Y,$$\tilde{y}\in Y.$假设对于某些给定的$x_0 \in X,$存在$y_{0} \in F(x_{0})$,使得$(\tilde{y},y_{0}) \in \vartheta.$解$x\in X$满足不等式$x\leq x_0$的存在条件,以及最小解和最小解的存在条件。定义并研究了所考虑的集值映射$F$和元素$\widetilde{y}$的变化包含解的稳定性。也就是说,假设“扰动”包含序列$F_i(x)\ni \tilde{y}_i,$$i\in \mathbb{N},$,并推导出解$x_i \in X$存在的条件,使得对于任何递增的整数序列$\{i_n\}$存在$\sup_{n \in \mathbb{N}}\{x_{i_{n}}\}= x,$,其中$x \in X$是初始包含的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
40.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信