Aesthetic Enhancement via Color Area and Location Awareness

Bailin Yang, Qingxu Wang, Frederick W. B. Li, Xiaohui Liang, T. Wei, Changrui Zhu
{"title":"Aesthetic Enhancement via Color Area and Location Awareness","authors":"Bailin Yang, Qingxu Wang, Frederick W. B. Li, Xiaohui Liang, T. Wei, Changrui Zhu","doi":"10.2312/pg.20221247","DOIUrl":null,"url":null,"abstract":"Choosing a suitable color palette can typically improve image aesthetic, where a naive way is choosing harmonious colors from some pre-defined color combinations in color wheels. However, color palettes only consider the usage of color types without specifying their amount in an image. Also, it is still challenging to automatically assign individual palette colors to suitable image regions for maximizing image aesthetic quality. Motivated by these, we propose to construct a contribution-aware color palette from images with high aesthetic quality, enabling color transfer by matching the coloring and regional characteristics of an input image. We hence exploit public image datasets, extracting color composition and embedded color contribution features from aesthetic images to generate our proposed color palettes. We consider both image area ratio and image location as the color contribution features to extract. We have conducted quantitative experiments to demonstrate that our method outperforms existing methods through SSIM (Structural SIMilarity) and PSNR (Peak Signal to Noise Ratio) for objective image quality measurement and no-reference image assessment (NIMA) for image aesthetic scoring.","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"30 1","pages":"51-56"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/pg.20221247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Choosing a suitable color palette can typically improve image aesthetic, where a naive way is choosing harmonious colors from some pre-defined color combinations in color wheels. However, color palettes only consider the usage of color types without specifying their amount in an image. Also, it is still challenging to automatically assign individual palette colors to suitable image regions for maximizing image aesthetic quality. Motivated by these, we propose to construct a contribution-aware color palette from images with high aesthetic quality, enabling color transfer by matching the coloring and regional characteristics of an input image. We hence exploit public image datasets, extracting color composition and embedded color contribution features from aesthetic images to generate our proposed color palettes. We consider both image area ratio and image location as the color contribution features to extract. We have conducted quantitative experiments to demonstrate that our method outperforms existing methods through SSIM (Structural SIMilarity) and PSNR (Peak Signal to Noise Ratio) for objective image quality measurement and no-reference image assessment (NIMA) for image aesthetic scoring.
通过颜色区域和位置意识增强审美
选择合适的调色板通常可以提高图像的美感,其中一种朴素的方法是从色轮中一些预定义的颜色组合中选择和谐的颜色。然而,调色板只考虑颜色类型的使用,而不指定它们在图像中的数量。此外,自动将单个调色板颜色分配到合适的图像区域以最大限度地提高图像的审美质量仍然具有挑战性。基于此,我们提出从具有高审美质量的图像中构建一个贡献感知的调色板,通过匹配输入图像的颜色和区域特征来实现颜色转移。因此,我们利用公共图像数据集,从美学图像中提取颜色组成和嵌入的颜色贡献特征来生成我们提出的调色板。我们将图像面积比和图像位置作为颜色贡献特征进行提取。我们进行了定量实验,证明我们的方法优于现有的方法,通过SSIM(结构相似度)和PSNR(峰值信噪比)进行客观图像质量测量和无参考图像评估(NIMA)进行图像美学评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信