A Prompt Array Keeps the Bias Away: Debiasing Vision-Language Models with Adversarial Learning

Q3 Environmental Science
Hugo Elias Berg, S. Hall, Yash Bhalgat, Wonsuk Yang, Hannah Rose Kirk, Aleksandar Shtedritski, Max Bain
{"title":"A Prompt Array Keeps the Bias Away: Debiasing Vision-Language Models with Adversarial Learning","authors":"Hugo Elias Berg, S. Hall, Yash Bhalgat, Wonsuk Yang, Hannah Rose Kirk, Aleksandar Shtedritski, Max Bain","doi":"10.48550/arXiv.2203.11933","DOIUrl":null,"url":null,"abstract":"Vision-language models can encode societal biases and stereotypes, but there are challenges to measuring and mitigating these multimodal harms due to lacking measurement robustness and feature degradation. To address these challenges, we investigate bias measures and apply ranking metrics for image-text representations. We then investigate debiasing methods and show that prepending learned embeddings to text queries that are jointly trained with adversarial debiasing and a contrastive loss, reduces various bias measures with minimal degradation to the image-text representation.","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"48 1","pages":"806-822"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.11933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 40

Abstract

Vision-language models can encode societal biases and stereotypes, but there are challenges to measuring and mitigating these multimodal harms due to lacking measurement robustness and feature degradation. To address these challenges, we investigate bias measures and apply ranking metrics for image-text representations. We then investigate debiasing methods and show that prepending learned embeddings to text queries that are jointly trained with adversarial debiasing and a contrastive loss, reduces various bias measures with minimal degradation to the image-text representation.
提示数组使偏见远离:对抗学习消除视觉语言模型的偏见
视觉语言模型可以编码社会偏见和刻板印象,但由于缺乏测量鲁棒性和特征退化,在测量和减轻这些多模态危害方面存在挑战。为了解决这些挑战,我们研究了偏见措施,并应用图像-文本表示的排名指标。然后,我们研究了去偏方法,并表明将学习到的嵌入添加到使用对抗性去偏和对比损失联合训练的文本查询中,减少了各种偏差度量,同时最小化了对图像-文本表示的退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信