A review of deterministic, stochastic and hybrid vehicular exhaust emission models

Sharad Gokhale, Mukesh Khare
{"title":"A review of deterministic, stochastic and hybrid vehicular exhaust emission models","authors":"Sharad Gokhale,&nbsp;Mukesh Khare","doi":"10.1016/j.ijtm.2004.09.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Vehicles spend more time near junctions and intersections in different driving modes, i.e., queuing, decelerating or accelerating and thus generating more pollutants than at road links [Claggett, M., Shrock, J., Noll, K.E., 1981. Carbon monoxide near an urban intersection. Atmos. Environ. 15, 1633–1642]. As a result, the receptors in these urban </span><em>corridors</em> are prone to frequent exposures of high pollutant concentrations (<em>episodic</em> conditions). In order to predict such ‘episodes’, an air quality model, capable of estimating the entire range (middle and extremes) of pollutant concentration distribution is needed. Hybrid models (combining deterministic and statistical distribution models) have demonstrated the ability to predict the entire range of pollutant concentrations in such co mplex dispersion situations with reasonable accuracy [Jakeman, A., Simpson, R.W., Taylor, J.A., 1988. Modelling distributions of air pollutant concentrations-III: Hybrid modelling deterministic-statistical distributions. Atmos. Environ. 22 (1) 163–174]. The present paper reviews the relevant deterministic and stochastic based vehicular exhaust emission models that may be hybridized and thus generate a hybrid model with improved prediction accuracy. The paper also describes the implications of hybrid models in formulating the Episodic-Urban Air Quality Management Plan (e-UAQMP).</p></div>","PeriodicalId":100719,"journal":{"name":"International Journal of Transport Management","volume":"2 2","pages":"Pages 59-74"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ijtm.2004.09.001","citationCount":"75","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transport Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1471405104000539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

Abstract

Vehicles spend more time near junctions and intersections in different driving modes, i.e., queuing, decelerating or accelerating and thus generating more pollutants than at road links [Claggett, M., Shrock, J., Noll, K.E., 1981. Carbon monoxide near an urban intersection. Atmos. Environ. 15, 1633–1642]. As a result, the receptors in these urban corridors are prone to frequent exposures of high pollutant concentrations (episodic conditions). In order to predict such ‘episodes’, an air quality model, capable of estimating the entire range (middle and extremes) of pollutant concentration distribution is needed. Hybrid models (combining deterministic and statistical distribution models) have demonstrated the ability to predict the entire range of pollutant concentrations in such co mplex dispersion situations with reasonable accuracy [Jakeman, A., Simpson, R.W., Taylor, J.A., 1988. Modelling distributions of air pollutant concentrations-III: Hybrid modelling deterministic-statistical distributions. Atmos. Environ. 22 (1) 163–174]. The present paper reviews the relevant deterministic and stochastic based vehicular exhaust emission models that may be hybridized and thus generate a hybrid model with improved prediction accuracy. The paper also describes the implications of hybrid models in formulating the Episodic-Urban Air Quality Management Plan (e-UAQMP).

确定性、随机和混合动力汽车尾气排放模型综述
车辆在不同的驾驶模式下花费更多的时间在路口和交叉路口附近,即排队,减速或加速,从而产生更多的污染物,而不是在道路连接[Claggett, M., Shrock, J., Noll, k.e., 1981]。城市十字路口附近有一氧化碳。大气压。环境科学学报,2003,16(2):433 - 442。其结果是,这些城市走廊中的受体容易频繁暴露于高污染物浓度(偶发性条件)。为了预测这样的“事件”,需要一个能够估计污染物浓度分布的整个范围(中间和极端)的空气质量模型。混合模型(结合确定性和统计分布模型)已经证明了在这种复杂的分散情况下以合理的精度预测污染物浓度的整个范围的能力[Jakeman, A., Simpson, r.w., Taylor, j.a., 1988]。空气污染物浓度的模拟分布- iii:混合模拟确定性统计分布。大气压。环境学报,22(1):163-174。本文综述了相关的基于确定性和随机的可混合的汽车尾气排放模型,从而得到一个预测精度更高的混合模型。本文还描述了混合模型在制定幕式城市空气质量管理计划(e-UAQMP)中的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信