{"title":"A Consensus Model for Group Decision Making with Hesitant Fuzzy Information","authors":"Zhiming Zhang, Chao Wang, Xuedong Tian","doi":"10.5121/ijfls.2022.12401","DOIUrl":null,"url":null,"abstract":"This article presents a more improved consensus-based method for dealing with multi-person decision making (MPDM) that uses hesitant fuzzy preference relations (HFPRís) that arenít in the usual format. We proposed a Lukasiewicz transitivity (TL-transitivity)-based technique for establishing normalised hesitant fuzzy preference relations (NHFPRís) at the most essential level, after that, a model based on consensus is constructed. After that, a transitive closure formula is created in order to build TL -consistent hesitant fuzzy preference relations (HFPRís) and symmetrical matrices. Afterwards, a consistency analysis is performed to determine the degree of consistency of the data given by the decision makers (DMs), as a result, the consistency weights must be assigned to them. After combining consistency weights and preset(predeÖned) priority weights, the Önal priority weights vector of DMs is obtained (if there are any). The consensus process determines either data analysis and selection of a suitable alternative should be done directly or externally. The enhancement process aims to improve the DMís consensus measure, despite the implementation of an indicator for locating sluggish points, in the circumstance that an unfavorable agreement is achieved. Finally, a comparison case demonstrates the relevance and e§ectiveness of the proposed system. The conclusions indicate that the suggested strategy can provide insight into the MPDM system.","PeriodicalId":44705,"journal":{"name":"International Journal of Fuzzy Logic and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy Logic and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijfls.2022.12401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 6
Abstract
This article presents a more improved consensus-based method for dealing with multi-person decision making (MPDM) that uses hesitant fuzzy preference relations (HFPRís) that arenít in the usual format. We proposed a Lukasiewicz transitivity (TL-transitivity)-based technique for establishing normalised hesitant fuzzy preference relations (NHFPRís) at the most essential level, after that, a model based on consensus is constructed. After that, a transitive closure formula is created in order to build TL -consistent hesitant fuzzy preference relations (HFPRís) and symmetrical matrices. Afterwards, a consistency analysis is performed to determine the degree of consistency of the data given by the decision makers (DMs), as a result, the consistency weights must be assigned to them. After combining consistency weights and preset(predeÖned) priority weights, the Önal priority weights vector of DMs is obtained (if there are any). The consensus process determines either data analysis and selection of a suitable alternative should be done directly or externally. The enhancement process aims to improve the DMís consensus measure, despite the implementation of an indicator for locating sluggish points, in the circumstance that an unfavorable agreement is achieved. Finally, a comparison case demonstrates the relevance and e§ectiveness of the proposed system. The conclusions indicate that the suggested strategy can provide insight into the MPDM system.
期刊介绍:
The International Journal of Fuzzy Logic and Intelligent Systems (pISSN 1598-2645, eISSN 2093-744X) is published quarterly by the Korean Institute of Intelligent Systems. The official title of the journal is International Journal of Fuzzy Logic and Intelligent Systems and the abbreviated title is Int. J. Fuzzy Log. Intell. Syst. Some, or all, of the articles in the journal are indexed in SCOPUS, Korea Citation Index (KCI), DOI/CrossrRef, DBLP, and Google Scholar. The journal was launched in 2001 and dedicated to the dissemination of well-defined theoretical and empirical studies results that have a potential impact on the realization of intelligent systems based on fuzzy logic and intelligent systems theory. Specific topics include, but are not limited to: a) computational intelligence techniques including fuzzy logic systems, neural networks and evolutionary computation; b) intelligent control, instrumentation and robotics; c) adaptive signal and multimedia processing; d) intelligent information processing including pattern recognition and information processing; e) machine learning and smart systems including data mining and intelligent service practices; f) fuzzy theory and its applications.